
1

Abstract
When diagnosing network problems, it is often

desirable to have a view of traffic inside the network. In
this paper we describe an infrastructure for passive
monitoring that can be used to determine which segments
of the network are the source of problems for an
application data stream. The monitoring hosts are
relatively low-cost, off-the-shelf PCs. A unique feature of
the infrastructure is secure activation of monitoring hosts
in the core of the network without direct network
administrator intervention.

1.0 Introduction
Achieving the goals of high performance distributed

data access and computing requires extracting the best
possible performance from the networks. This requires not
only end-to-end network performance information, but
also data from the interior of the network. Without this
data, the user or network engineer is often unable to
diagnose problems encountered in the end-to-end network
path.

The passive monitoring system described in this
paper, called Self-Configuring Network Monitor (SCNM),
uses special activation packets to collect this data. These
activation packets automatically activate monitors
deployed at the layer three ingress and egress routers of
the wide-area network, and at critical points within the site
networks. Monitoring output data is sent back to the
application data source or destination host. No
modifications are required to the application or network
routing infrastructure in order to activate monitoring of
traffic for an application. This ensures that the monitoring
operation does not add a burden to the network’s
administrator.

The hardware infrastructure for SCNM is designed to
be easy to install and administer securely. Figure 1 shows
a typical configuration between two application hosts, or
end hosts, across a WAN. A read-only tap is placed on the
DMZ between the site border router and the ISP router,
and the monitoring host, which we call the SCNM
monitoring host, is connected to this tap. The SCNM
monitoring host has an additional network interface

An Infrastructure for Passive Network Monitoring of
Application Data Streams

Deb Agarwal, José María González, Goujun Jin, Brian Tierney

 Computing Sciences Directorate
Lawrence Berkeley National Laboratory

University of California, Berkeley, CA, 94720

WAN

ISP Router

LAN
LAN

ISP RouterSite Border
 Router

Site Border
Router

End Host
End Host

SCNM Host

Read-only
Optical Tap

Read-only
Optical Tap

SCNM Host

Figure 1: Typical Installation

Published in the Proceedings of the 2003
Passive and Active Monitoring Workshop;
http:www.pam2003.org

2

(usually on an internal network) used for administering the
SCNM host and sending monitoring output data.

2.0 Related Work
There are several passive network monitoring tools

that are currently available. The Simple Network
Management Protocol (SNMP) provides an interface to
traffic statistics, usually gathered by passive sensors from
routers and end hosts. A drawback of SNMP is that the
requestor must have a community string or router access to
get at the data. Many networks use the Multi Router
Traffic Grapher (MRTG) [13] to collect and publish the
SNMP results from the routers. NetFlow [14] is a tool
developed for Cisco routers to track flows and is generally
used with cflowd [2] to analyze network flows. CoralReef
[3][12] provides current network traffic statistics as
observed at a network location.

For all these tools configuration and control is usually
restricted to network administrators, and only MRTG is
commonly accessible by non-administrators. Generally,
providing user access to tools like these is considered a
security risk since they allow users access to other users’
network traffic. Also, detailed information from SNMP
regarding the state at each router is likely to be
misinterpreted by people not familiar with the current
configuration of the router and network. This can lead to a
significant amount of incorrect incident reporting and
unnecessary work on the part of the network
administrators.

A similar work to SCNM is NIMI [17]. NIMI’s goal
is to create network measurement infrastructures from
diversely administered hosts, providing clients with
different types of access privileges. Security and
scalability are NIMI's main focus.

There are also tools available to passively record
detailed TCP packet traces. Among these, one of the most
popular is tcpdump [9], which is usually used on
application end-hosts to capture network traffic. The Bro
[15] system is a passive network sensor that is used
primarily to detect network-based intrusion attempts. Both
Bro and CoralReef were specifically designed to operate
on high-bandwidth streams (OC-48 in the case of
CoralReef).

Another important aspect of network monitoring is
data presentation tools. There are many such tools
available; for understanding TCP streams, two useful ones
are tcptrace [19] and tcpanaly [16]. Tcptrace is used to
convert a tcpdump file into a graph that can be displayed
by xplot. Tcpanaly can be programmed to interpret the
network stream and diagnose various problems with the
communication.

Other related work has been done by the IETF
Realtime Traffic Flow Measurement system (RTFM)

working group [1]. RTFM is designed to measure traffic
flows for traffic passing a given point in a network, and
could be used to collect and process the usage data so as to
provide information and reports which are useful for
network engineering and management purposes.

3.0 System Design
SCNM is designed to securely allow both network

engineers and application developers access to monitoring
data from inside the network. The infrastructure consists
of both hardware and software components.

The SCNM hardware component is the SCNM
monitoring host, which was illustrated in Figure 1. The
monitoring host is installed at critical points in the
network (e.g: next to key routers), where it will passively
capture packet headers for application traffic. The current
SCNM monitoring hosts can successfully capture packet
headers on networks with speeds up to and including
Gigabit Ethernet. For security reasons, the monitoring host
is designed to be incapable of sending its own traffic on
the network it is monitoring. Therefore, host
administration and transmission of monitoring results is
performed through a separate, typically lower bandwidth,
network connection.

The software components of SCNM, shown in Figure
2, are the activation packet generator, data collection
daemon, network analysis program (SCNMPlot), packet
capture daemon (pktd), and capture configuration / data
forwarding module. The first three of these components
run on the application host, or “endpoint” host; the rest of
the components run on the monitoring host. Below we
describe how each of these components are used.

A user wishing to activate monitoring of a particular
data stream uses the activation packet generator to format
and send an activation packet. The request is sent to the
application destination endpoint, not the SCNM
monitoring host. Thus the user does not need to explicitly
know the locations and identities of the SCNM hosts on

Endpoint SCNM Host

Activation
Packet

Generator

Data Collection/Storage Packet
Capture
Daemon

Capture Configuration
Data Forwarding

Activation
Packets

Filter
Config

Activation
Packets

Packet
Headers

Activation
Packets

Packet
Headers

Network
Analysis

Packets

Endpoint SCNM Host

Activation
Packet

Generator

Data Collection/Storage Packet
Capture
Daemon

Capture Configuration
Data Forwarding

Activation
Packets

Filter
Config

Activation
Packets

Packet
Headers

Activation
Packets

Packet
Headers

Network
Analysis

Packets

Figure 2: SCNM Software Components

3

the path. All the SCNM monitoring hosts listen for these
special UDP activation packets on a well-known port.
Each SCNM host along the data path capture the
activation packet as it travel past its interface.

The activation packet specifies the characteristics of
the traffic to monitor including source, destination, and
port(s) of the traffic. The format of a activation packet is
illustrated below in Table 1. We use a thirty-two bit magic
number field to permit quick recognition of valid SCNM
packets, and to discard spurious packets on the activation
port. The activation packet format version and the
sequence number of the activation packet uniquely
identify this request and how to interpret it. Traffic type
provides the IP protocol number of the type of traffic to
monitor (e.g. UDP or TCP). The rest of the packet
contains parameters specifying the characteristics of the
traffic to monitor such as the source and destination
addresses and ports used by the traffic. For example, the
destination address and port are specified using a
parameter that is six bytes in length with the first four
being address and the second two being the port.

Table 1: Activation packet format
Upon receipt of a UDP packet from the SCNM

activation port, the SCNM software first verifies the magic
number. If the magic number is correct, then the rest of the
fields are checked. An activation packet is rejected if the
specified source and destination of the traffic to be
monitored does not match the source and destination in the
IP header of the activation packet. If all fields are valid,
the SCNM host configures itself to monitor that traffic by
composing a filter string defining the traffic in the capture
configuration software. The filter string is then set in the
packet capture daemon.

The traffic-monitoring filter associated with a
particular request automatically times out and the
monitoring ceases after a predefined (and generally short)
period of time unless another activation packet is received.
The result is that stopping the monitoring requires no
additional intervention on the part of the requester and no
intervention on the part of the network operators. In
addition, it is robust to host failure. To keep a filter active,
the SCNM activation packet generator periodically
resends the activation packet.

The resulting data is buffered and compressed on the
SCNM monitor host, and then it is sent to either the source
or destination of the monitored traffic (as specified by the
activation packet).

Monitoring of a traffic flow is accomplished by
capturing network- and transport-layer headers
corresponding to a particular filter string in the SCNM
monitor host. In order to support monitoring for several
concurrent monitoring requests at the same SCNM host,
we multiplex the network device. Network device
multiplexing is complicated by configuration issues and
operating system limitations. For example, Berkeley
Packet Filter [11] (BPF)-based platforms limit the number
of processes listening to the network device to one process
per virtual BPF file.

We use the packet capture daemon, pktd [5], to
provide multiple processes with shared access to a single
virtual BPF device (pktd is based on libpcap[8], the
standard packet capture library, which is also used by
tcpdump, NIMI, and Bro). Pktd sets the device filter to a
logical OR of all the requested filters, and the capture
length (snaplen) to the largest requested capture length.
When a packet matches the combined filter, it is captured
by pktd, and delivered to the data forwarder.

4.0 Security Model
The SCNM host is designed to be installed,

administered, and maintained by the network
administrators with minimal effort. At the same time, an
appropriate subset of its functionality is intended to be
accessible to average users. Users can monitor particular
data streams without requiring special access privileges or
intervention of the network administrator.

The core of the security model revolves around the
concept that a user is allowed to monitor only their own
data. In order to be accepted by the SCNM host, the
activation packet must be traveling between the source and
destination of the traffic to be monitored. The SCNM host
verifies this by comparing the request parameters with the
source and destination in the IP header of the activation
packet. Also, the SCNM host is only willing to send
resulting data to the source or destination of the monitored
traffic. Thus, although spoofing of the IP source and
destination might result in an extra stream being
monitored, the resulting monitoring data will not be sent to
the spoofing host. Each SCNM host also maintains a local
audit log of all monitoring requests.

In the current design, we assume that all users with
access to an end host are allowed to monitor traffic to or
from that host. If this turns out to be an issue, we can limit
the ability of users to activate the monitor by using a
privileged port for the activation packets. In this case, the

Magic Number

Major
Version

Minor
Version

Sequence
Number

Traffic
Flags

Traffic
Type

Number of
Parameters

Parameter
Type

Parameter
Size

Parameters

4

end user would need to have root access to request
monitoring of traffic to or from that host.

Third-party monitoring requests
Currently, requests are only accepted if they come

from one of the end-hosts and the data can only be
returned to one of the end hosts. This limitation simplifies
the security model but makes it difficult to monitor traffic
from hosts that are unable to receive the data. It also limits
access to the data. In the next phase of SCNM, request
packets will be enhanced to also allow inclusion of
authorization credentials and a destination address. The
network administrator of an SCNM host will be able to
explicitly specify the set of allowed credentials and
destination hosts. Each SCNM host will verify the
credentials as they are received and initiate monitoring
only if the request is authorized. In this case, both the
client initiating the packet monitoring request and the data
sink for the results may be different from the endpoints of
the traffic to be monitored.

The administrator of each SCNM host may define a
set of authorized users by defining a set of authorized keys
that can sign requests coming from an arbitrary or specific
location and request a test. To activate monitoring from a
host that is not one of the endpoints requires a signed and
authorized activation packet. This mechanism will allow
activation of the monitor by network administrators and
configuration of a dedicated monitoring archive for an
SCNM host.

5.0 Implementation Issues
In this section, we describe some of the issues we

encountered while implementing and deploying SCMN
monitoring hosts. We show that standard PC hardware is
capable of this type of passive monitoring.

5.1 Packet Capture Host Issues
Our currently deployed packet capture hosts are based

on FreeBSD with a SuperMicro 370DL motherboard with
a single P-III Xeon 933MHz CPU, PCI 64bit/66MHz IO
bus, 133 MHz DIMMs, and two SysKonnect PCI 64 bit
1000BT network interface cards (NIC), one for capturing
packets in each direction. Although these are relatively
high-end systems, there were many performance related
issues that had to be addressed. Most of these issues are
relevant regardless of the power of the CPU. Modern
high-end PC hardware requires significant tuning to
enable capture and filtering of traffic at Gigabit per second
speeds without dropping packets. This tuning included
issues involving interrupt moderation, timestamping
packets in the NIC, and reducing kernel memory copies,
all discussed below. Using this hardware we have

monitored TCP flows of up to 940 Mbits/sec for several
minutes.

Packet Capture Data Path
When capturing high-bitrate packet streams, every

packet takes the following path. Packets are captured by
the network interface, which then copies the packets to
system memory (mbufs) using DMA. Once the packet is
in system memory, the CPU receives an interrupt to
activation packet processing. The CPU then filters and
trims the packets to leave only the IP and TCP headers.
The result is then copied to one of two BPF kernel buffers.
Data continues to be added to the buffer until it is full.
When a BPF buffer becomes full, its contents are copied
by BPF to the user space, handed to pktd, and then
demultiplexed to the data forwarding component.

Interrupt Moderation
Capture of a network packet generates an interrupt

from the NIC, so that the CPU can copy the packet from
system buffer into BPF kernel buffer. Capturing packets
on a 1000BT NIC generates one interrupt every 12 µs. The
host system is not able to keep up with this interrupt rate.
Some network cards, including the SysKonnect card,
provide an interrupt moderation feature, also known as
interrupt coalescence, which bundles several packets into
a single interrupt. The idea is that the NIC, on receipt of a
packet, does not automatically generate an interrupt to
request a transfer of the data to memory. Instead, the
interrupt is delayed for up to a given amount of time (the
interrupt moderation period) in hopes of other packets
arriving in the meantime and being served by the same
interrupt.

Ideally, the interrupt moderation period is short
enough to keep the NIC from running out of buffers and to
avoid large delays in packet processing. The main
drawback of interrupt coalescing is that the kernel is no
longer able to assign accurate timestamps to the arriving
packets. The problem is that packets reach the BPF kernel
buffer a significant amount of time after they were copied
to the system buffer. Fortunately, some network cards
(including SysKonnect) have an onboard timestamp
register which can provide information on the exact packet
arrival time, and pass this timestamp to the system buffer
descriptor. The unmodified FreeBSD BPF implementation
obtains a timestamp from the system clock before
processing and copying each packet into the BPF kernel
buffer. We have modified the FreeBSD SysKonnect driver
and BPF implementations to use the NIC timestamp,
instead of the system clock timestamp.

The maximum interrupt interval depends on the
average packet size and the space the kernel reserves for
incoming data from the NIC, which is specified as a

5

number of per-packet kernel receive buffers (N). The
maximum interrupt interval can thus be calculated as:

time = N * average_packet_size /
line_speed

The default number of kernel receive buffers for the
SysKonnect driver is 256, and the default interrupt
servicing frequency is 200 µs in the FreeBSD kernel. If the
average packet size is 1000 bytes, 256 receive buffers will
become occupied after 2 ms. If instead the packet size is
l500-bytes, the interrupt interval can be as large as 3 ms.
We are currently using a 1 ms interrupt moderation period.
Increasing the number of receive buffers will allow a
longer coalescence period, however, a large number of
receive buffers requires large system memory resources.

Memory Bandwidth
Memory bandwidth is one of the most critical factors

in data capture. After packets arrive at the SCNM host
system, the packets must be copied from the NIC to the
system memory. At this point the data is filtered, so only
the packet headers which match a monitoring request filter
are copied. The filtered headers are copied to the BPF
buffer, then to user space, secondary storage, back to user
space, and back to the system memory again before being
copied to the NIC and sent to the endpoint. If memory is
sufficient, the copy to secondary storage and back actually
involves only one memory copy, therefore in practice the
headers are copied 5 times.

For 1500 byte packets, the IP and TCP headers
typically account for roughly 3% of the data. Assuming
bidirectional traffic, each of the two NICs transfer data to
the system bus at 125 MBytes/second. This means that the
memory bandwidth required is:

Capturing smaller packets requires even more bandwidth,
as the ratio of header size to data size is much higher.

The first generation hardware used for the SCNM
monitoring hosts were equipped with 133 MHz DIMMs.
These DIMMs provide a system memory bandwidth of
approximate 300 MBytes/second. This bandwidth satisfies
monitoring of large packet traffic such as bulk data
transfer, but it is far less than would be required to capture
the headers of small packets. In practice, this hardware is
capable of capturing all packets on a 1000BT network
which is 80% utilized and has an average packet size of
800-bytes. Higher utilizations can be monitored if the
average packet size is larger.

5.2 Software Design Issues
In order to perform high-bitrate packet capture, the

SCNM software and kernel software such as BPF,

required a great deal of optimization and tuning. In this
section we discuss how we optimized the data path,
including the use of buffered I/O and tuning of the BPF
buffer size. We also discuss compression techniques we
are using to reduce the data volume.

Optimizing the Data Path
All the code running at the SCNM host must be as

efficient as possible to ensure the minimum amount of
work is carried out on a per-packet basis.

BPF filtering is carried out after all the data has been
copied from the NIC to the system buffers. Note that we
are using the NIC in promiscuous mode, allowing the NIC
to capture everything. The BPF kernel module compares
each packet to the pktd filter, and any matching packet is
trimmed and its IP and TCP headers are copied into the
BPF kernel buffer.

When the BPF buffer becomes full, the kernel copies
data from the BPF buffer to the capture daemon buffer (in
user space). There are two BPF buffers, and the BPF
module will start to fill the second BPF kernel buffer
while the data is being copied from the first buffer.
Therefore if the packet capture daemon cannot consume
the data fast enough, the BPF module will drop packets
when both BPF kernel buffers are full. Once the packet
header is in user space, pktd delivers the headers to the
data forwarder.

BPF Buffer Size
Another important aspect when trying to maximize

the performance of packet capture is the size of the BPF
kernel buffer. While this parameter is not exposed by
libpcap, we have found it is an important factor in
allowing high-bitrate packet capture. (Note: by
high-bitrate we are referring to roughly 800 Mbps
streams.) The current libpcap default value of 32 KB
works well only when the amount of data captured per
packet (the snaplen) is small (less than 100 bytes).

For larger snaplens, the BPF buffers have space for a
smaller number of packets, which implies more context
switches to move the data from the BPF buffers to libpcap.
The consequence is that libpcap starts losing packets. For
example, only half of the packets are captured when the
snaplen is 300 bytes. The solution in this case was to
increase the BPF buffer size. We found by
experimentation that a BPF buffer size of about 140
KBytes produced much better results for the particular
monitoring host we are using.

Header Compression
Even though we are only capturing headers, the

amount of data collected can still be quite large. For
example, a 10 second capture of a 300 Mbps TCP stream
contains over 20 MB of header data. This is enough data to

2 125× MBps 2 125MBps× 3%×() 5copies×[] 300MBps≅+

6

affect the measured link when it is sent back to the
requestor. To reduce this load we have implemented
compression of the headers.

In general, our compression implementation follows
the approach used by CSLIP guidelines [7], but with some
differences. First, CSLIP relies on the underlying link
layer for conveying packet size information, whereas our
compression must be fully self-contained. Second, we
need to include timestamps as well as the packet headers.
Third, CSLIP was designed to operate primarily in
environments where space was at a greater premium than
computation cycles, so squeezing every last bit of
compression, at the cost of some non-aligned operations,
makes sense for CSLIP. For pktd, we're more concerned
with saving cycles than with squeezing every bit.
Accordingly, for our compression we rely on byte
operations instead of bit-wise ones.

We are also experimenting with selective
compression, where some packet fields are compressed,
possibly even in a lossy way and other fields are thrown
out. The idea is to take advantage of the fact that the user
may not need all the information present in the headers.
For example, if we want to look for the source of lost
packets, we probably do not need the TCP urgent pointer,
nor any other TCP option. Others do not need to be
replicated perfectly, and may be compressed in a lossy
way. For example, possibly the only interesting
information for checksums is whether or not it is correct.
If the value of the IP checksum is wrong, the packet will
be discarded by the kernel.

We found that our header compression works quite
well: pktd achieves an average lossless compression ratio
of about 6:1 for UDP headers and about 4:1 for TCP
headers. The UDP headers, including timestamps, are
represented with just 7 bytes/packet; the TCP headers,
including timestamps and TCP options, in only 15
bytes/packet. The UDP traces were for synthetic,
heavily-fragmented UDP packets with an average length
of 1500 bytes, corresponding to a single connection. The
TCP traces are from measured FTP traffic, with an
average 4.16 bytes of options per packet. Compression is
carried out with no noticeable performance loss. Using a
68-byte snaplen, we can support multiple concurrent pktd
clients capturing the test stream with no packet losses
(we've tested up to a dozen). For more information see [5].

6.0 DMZ access issues
Since the DMZ provides the site’s connection to the

WAN, access to it is usually tightly controlled by the
network administrators. A critical consideration in the
design of SCNM was to create a security model that was
acceptable to sites and would allow the monitors to be
deployed on the DMZ.

To date, we have deployed SCNM monitoring hosts at
the DMZs of Lawrence Berkeley National Laboratory
(LBNL), Oak Ridge National Laboratory (ORNL),
Stanford Linear Accelerator Center (SLAC), and National
Energy Research Scientific Computing Center in Oakland,
CA. The SCNM security model underwent an extensive
security review at each site. In each case we met either
personally or over the phone with the network
administrators from the site. In this meeting we presented
the SCNM security model and answered site questions. In
all cases the existing SCNM security model was
acceptable to the site once all their questions had been
answered.

The issues encountered deploying SCNM hosts to
large sites and convincing site security staff to install the
SCNM host on their DMZ have varied from site to site.
For example, one site took strict control over the machine
including all user accounts, software upgrades, and
responsibility for patches to the operating system. Several
other sites requested that we administer the machine and
take responsibility for upgrades and patches. Some of
these sites wanted root or user access to the box to monitor
activity or check access logs. In several of the installations
the site provided the fiber taps for the DMZ. In a few we
provided the taps. One of the other issues encountered was
host installation and software upgrade timing. In several
cases, we provided the SCNM host to the site in
anticipation of final approvals. This sometimes meant that
by the time the machine was installed its software was out
of date. We generally resolved this by upgrading it once it
was accessible via the network.

One of the sites expressed concern regarding the third
party activation model and the assumption that everyone
with access to a machine can monitor traffic to and from
that machine. This site has, however, deployed the
monitor and we will consult with them before deploying
any third party activation capabilities to their site. We are
also currently working with several additional sites to
install more of these monitoring hosts.

7.0 Results
Preliminary sample results are shown below. For this

test we used SCNM hosts installed at the LAN-WAN
boundaries at LBNL and ORNL. In Figure 3, the line on
the left is the packet trace from the SCNM monitoring host
near the source (LBNL), and the line on the right from the
SCNM host near the destination (ORNL). From the
difference in slope of the two lines, one can clearly see
that the path between the two monitoring hosts is fairly
congested.

Figure 4 shows a zoomed-in view of this data. From
this figure it is clear that the packets are much more
unevenly spaced by the time they reach the ORNL DMZ.

7

Later in the trace, Figure 5 shows that a large burst of
packets are lost after they leave site 1 (LBNL), and before
they arrived at site 2 (ORNL).

These plots were generated by using tcptrace to create
xplot files from the tcpdump-formatted files collected by
SCNM. Our modified version of the jPlot [10] (a Java
version of xplot), called SCNMPlot, supports comparison
of multiple input files. SCNMPlot also allows one to shift
packet traces in time for easy visual analysis.

This type of data analysis and visualization can be
invaluable in helping users and network administrators to
find the location and nature of network problems.

8.0 Future Work
As we install SCNM monitoring hosts at more sites

across the network, we expect that packet header trace
analysis will reveal other interesting network behavior.
We expect to be able to detect phenomena such as packet
reordering, packet compression (clustering together of
packets) [18], and so on.

We do not explicitly support NAT (Network Address
Translation) [4]. This is not an issue as our measurement

hosts are located close to the ISP router. However a future
direction could be to support monitoring of traffic whose
identification changes depending on the measurement
point.

10 Gigabit Ethernet is now readily available, and 10
Gigabit PCI-X NICs are just becoming available [6].
Capturing traffic at this rate will be much more
challenging, but we believe this could be possible. For
example, to capture ten 200 Mbit/second flows (35% link
utilization of a 10 Gigabit Ethernet) requires 908 MB/s
memory bandwidth. The best current PC hardware (early
2003) is approaching this memory bandwidth. If the link
utilization is higher or the packet size is smaller, the
capture system will require more memory bandwidth. One
solution that could help is to do header compression earlier
in the filtering pipeline; at the BPF filtering phase.

9.0 Conclusions
By allowing end users to monitor their own traffic, the

Self-Configuring Network Monitoring system provides
critical functionality needed to diagnose network
problems. The architecture allows users to trigger passive
monitoring hosts in the interior of the network without
needing intervention by network administrators. Early
results show that SCNM monitoring data can be used to
help identify congested or misconfigured network
segments. We are currently working on improvements to
the efficiency of the software to allow capture of higher
rate streams and deployment of the monitor to additional
sites.

10.0 Acknowledgments
This work was supported by the Director, Office of

Science. Office of Advanced Scientific Computing
Research. Mathematical, Information, and Computational
Sciences Division under U.S. Department of Energy
Contract No. DE-AC03-76SF00098. This is report no.
LBNL-51846.

11.0 References
[1] N. Brownlee “RTFM: Applicability Statement”, IETF
RFC2721

[2] Cflowd: http://www.caida.org/tools/measurement/cflowd

[3] CoralReef:http://www.caida.org/tools/measurement/
coralreef/

[4] K. Egevang and P. Francis, “The IP Network Address
Translator (NAT)”, RFC 1631, May 1994

[5] J.M. Gonzalez and V. Paxson, “pktd: A Packet Capture
and Injection Daemon”, Proceeding of the Passive and Active
Monitoring Workshop, April 2003.

Figure 3: SCNMPlot output showing congested
router

Figure 4: Zoomed view

8

[6] Intel PRO/10GbE LR Server Adapter http://www.intel.
com/network/connectivity/products/10gigabit/index.htm

[7] V. Jacobson. “Compressing TCP/IP headers for
low-speed serial links”, 1990.

[8] V. Jacobson and C. Leres and S. McCanne, “pcap: Packet
Capture library. UNIX man page,” 1993 (http://www.tcp-
dump.org)

[9] V. Jacobson, C. Leres, and S. McCanne, “tcpdump: dump
traffic on a network. UNIX man page,” 1993. (http://www.tcp-
dump.org)

[10] jPlot: http://www.tcptrace.org/jPlot/

[11] S. McCanne and V. Jacobson, “The BSD Packet Filter: A
New Architecture for User-level Packet Capture,” Proc. Winter
USENIX Technical Conference, Jan. 1993.

[12] D. Moore, et. al., “CoralReef software suite as a tool for
system and network administrators”, Usenix Lisa Conference,
2001

[13] MRTG: The Multi Router Traffic Grapher, http://peo-
ple.ee.ethz.ch/~oetiker/webtools/mrtg/

[14] NetFlow whitepaper: http://www.cisco.com/warp/pub-
lic/cc/pd/iosw/ioft/neflct/tech/napps_wp.htm

[15] V. Paxson, “Bro.: A System for Detecting Network
Intruders in Real-Time,” Proceedings of the 7th USENIX Secu-
rity Symposium, San Antonio, TX, January 1998.

[16] V. Paxson, “Automated Packet Trace Analysis of TCP
Implementations,” ACM SIGCOMM'97, September 1997,
Cannes, France.

[17] V. Paxson, A. Adams, and M. Mathis, “Experiences with
NIMI”, Proc. Passive & Active Measurement: PAM-2000.

[18] V. Paxson, “Measurements and Analysis of End-to-End
Internet Dynamics”, Ph.D. dissertation, 1997.

[19] Tcptrace: http://www.tcptrace.org/

Figure 5: SCNMPlot output showing large burst of lost packets

