
 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

1August 16, 1997 5:08 pm [SC97.paper.fm]

High-Speed Distributed Data Handling for On-Line Instrumentation Systems1
William E. Johnston2, William Greiman, Gary Hoo, Jason Lee, Brian Tierney, Craig Tull

Computing Sciences
Ernest Orlando Lawrence Berkeley National Laboratory

{WEJohnston, WHGreiman, GJHoo, Jason_Lee, BLTierney, CETull}@lbl.gov

Douglas Olson, Nuclear Science Division
Ernest Orlando Lawrence Berkeley National Laboratory

DLOlson@lbl.gov

Abstract

The advent (and promise) of shared, widely available, high-speed networks provides the potential for
new approaches to the collection, organization, storage, and analysis of high-speed and high-volume
data streams from high data-rate, on-line instruments. We have worked in this area for several years,
have identified and addressed a variety of problems associated with this scenario, and have evolved an
architecture, implementations, and a monitoring methodology that have been successful in addressing
several different application areas.

In this paper we describe a distributed, wide area network-based architecture that deals with data
streams that originate from on-line instruments. Such instruments and imaging systems are a staple of
modern scientific, health care, and intelligence environments. Our work provides an approach for
reliable, distributed real-time analysis, cataloguing, and archiving of the data streams through the
integration and distributed management of a high-speed distributed cache, distributed
high-performance applications, and tertiary storage systems.

1.0 Introduction

In this paper we discuss aspects of our work that relate to a project whose goal is to demonstrate a
scalable approach to the problem of high-bandwidth data handling for analysis of high-energy and
nuclear physics data. We also consider the application of the approach to having a source of data
(20-40 megabytes/s) that is remote from the computational and storage facilities.

The high energy nuclear physics (HENP) accelerator detector data analysis problem consists of two
parts - data collection and event reconstruction (phase 1) and physics analysis (phase 2).

In phase 1 of a physics experiment, a detector puts out a steady state data stream of 20-40
megabytes/s. Traditionally, this data is archived and a first level of processing is performed at the
experiment site. The resulting second-level data is also archived and requested later for further
analysis. The data thus is archived at the experiment site in “medium” sized tertiary storage systems.

1. The work described in this paper is supported by the U. S. Dept. of Energy, Office of Energy Research, Office of Computational and Technology
Research, Mathematical, Information, and Computational Sciences Division (http://www.er.doe.gov/production/octr/mics) under contract
DE-AC03-76SF00098 with the University of California, and by DARPA, Information Systems Technology Office (http://www.ito.darpa.mil). Contact:
wejohnston@lbl.gov, Lawrence Berkeley National Laboratory, mail stop: B50B-2239, Berkeley, CA, 94720, ph: 510-486-5014, fax: 510-486-6363,
http://www-itg.lbl.gov). This is report no. LBNL-40697.

2. W. E. Johnston: mail address: 50B-2239, Lawrence Berkeley National Laboratory, Berkeley, CA 94720. Tel: +1-510-486-5014, fax:
+1-510-486-6363, wejohnston@lbl.gov, http://www-itg.lbl.gov/~johnston.

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

2August 16, 1997 5:08 pm [SC97.paper.fm]

We believe that the “medium” sized tertiary systems at experiment sites can be replaced by a
distributed storage system consisting of a high-speed, high-capacity disk-based cache and very large
tertiary systems at dedicated storage sites. For the various data sources and sinks, the cache provides:

• a standardized approach for high data-rate interfaces;

• an “impedance” matching function (e.g., between the coarse-grained nature of parallel tape
drives in the tertiary storage system and the fine-grained access of hundreds of applications);

• flexible management of cache resources to support initial caching of data, processing, and
interfacing to tertiary storage.

We propose the use of the
LBNL-developed Distributed-Parallel
Storage System (DPSS) as the cache for
all stages of data manipulation. The
DPSS provides a scalable, dynamically
configurable, high-performance, and
highly distributed storage system that is
usually used as a (relatively long-term)
cache of data. It is typically used to
collect data from on-line instruments
and then supply that data to analysis
applications, or to supply data to high
data-rate visualization applications as in
the case of the MAGIC wide-area
gigabit testbed where the DPSS was
originally developed. (See [Lau94],
[DPSS], and [MAGIC].) The system is
also being used in satellite image
processing systems and for distributed,
on-line, high data-rate health care
imaging systems.

We have two specific objectives for this
project. One is to demonstrate the use of
distributed computational systems to do
the phase 1 data processing in real time.
The real-time processing of this data
potentially supports two capabilities.
First, it can provide auxiliary
information to assist in the organization
of data as it is transferred to tertiary
storage (the experiment is expected to
generate about 1.7 terabytes/day), and
second, it can provide feedback to the
instrument operators about the
functioning of the accelerator - detector
system and the progress of the

Off-line
Event

Archive

On-line
Event Data

Storage
(DPSS)

Remote
Analysts

Remote
Analysts

analysis data flow

Reconstruction
and

High-Performance
Analysis Cluster

ATM
Net

A
T
M
W
A
N

Local Event
caching on

(DPSS)

Local Event
caching on

(DPSS)

Figure 1b Distributed physics data handling, Phase 2 data
flows.

Detector

Detector Environment

Off-line
Event

Archive

On-line
Event Data

Storage
(DPSS)

(mass storage
systems exhibit

significant
economies of

scale)

Local Data
Buffer

ATM
LAN

A
T
M
W
A
N

multiplex
approximately to

the
reconstruction
platform level

load-balancing as required
here rather that at head-endreconstruction data flow

Reconstruction
and

High-Performance
Analysis Cluster

Figure 1a Distributed physics data handling, Phase 1data
flows.

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

3August 16, 1997 5:08 pm [SC97.paper.fm]

experiment, so that changes and corrections may be made. This environment is illustrated in Figure
1a.

The second objective is to demonstrate an architecture that maximizes the efficiency of the phase 2
analysis of the data. This involves using a high-speed cache (the DPSS) as a large “window” on the
tape-based data in the tertiary storage system in order to support the use of both local and remote
computational resources. This is illustrated in Figure 1b.

The architectural issues include the organization of the cache, the various interfaces to the cache, the
management of the movement of data to and from the tertiary storage systems, and management in a
wide area network.

We describe an experiment that is designed to validate and demonstrate the approach, and some early
results using an OC-12 (622 mbits/sec) ATM network to connect the components that implement the
architecture. The STAR experiment at RHIC ([STAR1], [STAR2]) is used as the basis for a realistic

example.3

2.0 The Overall Model

The high-speed data handling model is
based on the idea of a standard interface to a
large, application-oriented, distributed
disk-based cache. Each data source deposits
its data in the cache, and each data consumer
takes data from the cache, usually writing
the processed data back to the cache. In
almost every case there is also a tertiary
storage system manager that migrates data to
and from the cache. (See Figure 2.)

Depending on the size of the cache relative
to the objects of interest, the storage system
management (object manager + archive data
mover of Figure 2) may only involve moving
partial objects to the cache; that is, the cache
is a moving window for the object/data set.
The cache - application interface can (and
for this application, does) implement Unix
disk I/O semantics: upon posting a read, the available data is returned; requests for data in the data set
but not yet migrated to cache cause the application-level read to block until the data is migrated from
tape to cache.

Generally, the cache is large compared to the available disks of a typical computing environment, and
very large compared to any single disk (e.g., hundreds of gigabytes).

This general model has been used in several data-intensive computing applications. For example, a
real-time digital library system (see Figure 3 and [DIGLIB]) collects data from a remote medical
imaging system, and automatically processes, catalogues, and archives each data unit together with
the derived data and metadata, with the result being a Web-based object representing each data set.

3. RHIC is a high energy physics accelerator and STAR is a detector (instrument) at RHIC.

tertiary storage
system

(e.g., HPSS)

high-speed,
distributed random

access cache

initial data
processing analysis

applications

archive data
mover

instrument
(e.g., detector)

cache interfacecache interface

cache interface

object
management

object archiving
and management

ca
ch

e
in

te
rf

ac
e

MSS interface

Figure 2 The Data Handling Model

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

4August 16, 1997 5:08 pm [SC97.paper.fm]

Figure 3 Distributed Large-Data-Object Overall Architecture and Data Flow

Application
◆ cache-based or

Web-based
access to LDO
components

LDO “object”
description

generation (4)

consumerproducer
(capture, catalogue)

Web browser
◆ data-user interface
◆ curator interface

Processing (3)
◆ generate:

• object template

• metadata

• derived represen-
tations

◆ manage initial
archival storage

search engine (6)

m
et

ad
at

a

DPSS (2)
◆ high speed data

cache for
incoming data

Web server
◆ LDO access

methods
◆ search engine

management
◆ cache/MSS

management (8)
◆ some LDO

data-components

Data
Source (1)

◆ collection
◆ buffering
◆ network

transport

DPSS (2)
◆ cache for high

speed application
access to data

MSS
◆ tertiary storage archiving

of
large-data-components

local storage
◆ WALDO Web

server based
LDO
component
storage

access control (7)

public-key
infrastructure
use-condition

certificates

object management
(persistence, metadata mg’mt,

storage mg’mt)

(5)

(5)

NTON
network
testbed

to the
MAGIC
testbed

Lawrence Berkeley
National Laboratory and

Kaiser Permanente
On-line Health Care
Imaging Experiment San Francisco Bay Area

LBNL WALDO server and
DPSS for data processing,
cataloguing, and storage

Kaiser San Francisco Hospital Cardiac
Catheterization Lab (digital video capture)

Kaiser Oakland
Hospital

(physicians and
databases

Figure 4 Physical architecture of the health care imaging application as it is embedded in the National
Transparent Optical Network testbed.

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

5August 16, 1997 5:08 pm [SC97.paper.fm]

This automatic system operates 10 hours/day, 5-6 days/week with data rates of about 30 Mbits/sec
during the data collection phase (about 20 minutes/hour). (See Figure 4.)

3.0 Prototype Architecture for HENP Distributed Analysis

The STAR analysis framework (STAF -
see [Tull97]) is being used to provide a
realistic application environment in
which to validate and refine the data-
handling architecture and
implementation.

Generally speaking, STAF (Figure 5)
manages self-describing data structures
on behalf of analysis modules. Data is
requested through a standard interface
that supports several communications
models, including the DPSS cache. The
data is converted to machine-specific
format and placed into memory data
structures, whence it is accessed by the
analysis modules.

The prototype architecture for HENP
data analysis is illustrated in Figure 5.
The analysis phase is a second level of
processing of the detector data, and
typical data volumes are 1700
gigabytes/day, with a processing
requirement of six KSpecInt92/
Mbyte/sec. [Olson]

The analysis framework generates
queries that produce a list of objects of
interest. This list of objects, then, has to
be retrieved from tertiary storage, and
loaded into the cache for processing.
The loading process involves parallel
transfers from the tertiary storage system
to the cache. When an object (or partial
object) has been loaded into the cache, the object manager is notified, and in turn it notifies the
analysis code. Multiple instances of the analysis code (operating under the control of a work flow
manager) running simultaneously on many different systems then read data from the cache into
memory, and processing commences. In a typical configuration (e.g., Figure 1b) the analysis systems
may be widely distributed, and they all consume data from the cache, and return results to the cache.

4.0 The Cache Architecture

The Distributed-Parallel Storage System (DPSS) serves several roles in high-performance,
data-intensive computing environments. This application-oriented cache provides a standard interface
for high-speed data access, and provides the functionality of a single very large, random access,

Application

Processing
Management

Machine
Independence

Data Structure
Management

Storage and
Communication

Model

data

data
request

Fortran and C/C++ Analysis Modules
(physicists)

STAR Analysis Framework
(STAF)

Datasets & Tables Access

Generic XDR Library

http+memorytapeTCPfile

e
le

m
e

n
ts

 c
o

m
m

o
n

 t
o

 h
ig

h
p

e
rf

o
rm

a
n

ce
,

d
is

tr
ib

u
te

d
 d

a
ta

sy
st

e
m

s

DPSS

Figure 5 STAF: The STAR analysis framework.

HPSS
(tertiary storage

system)

Distributed-Parallel
Storage System

(an application-oriented
data cache)

Analysis Framework

 analysis algorithms

data structure / object
access methods

high-performance data
access

Archive
Manager

query

object
“handle”

event / tape
list

Object Manager
•query interface
•query resolution
•tertiary storage location

management

Data
Mover

STAF

Figure 6 Architecture

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

6August 16, 1997 5:08 pm [SC97.paper.fm]

block-oriented I/O device (i.e., a “virtual disk”). It provides high capacity (we anticipate a terabyte for
the full-blown version of the experiment described here) and serves to isolate the application from the
tertiary storage system. Many large data sets can be logically present in the cache by virtue of the
block index maps being loaded even if the data is not yet available. In this way processing can begin
as soon as the first data has been migrated from tertiary storage.

Generally speaking, the DPSS can serve as an application cache for any number of high-speed data
sources (instruments, multiple mass storage systems, etc.). The naming issue (e.g., resolving
independent name space conflicts) is handled elsewhere. For example, in the on-line health care
imaging system mentioned above, the name space issue is addressed by having all of the data
represented by Web-based objects which are managed by the LBNL Wide Area Large Data Object
management architecture (WALDO) [DIGLIB]. At the minimum WALDO provides globally unique
naming, and serves as a mechanism for collecting different sources of information about the data. In
our model, the Web object system also provides a uniform user (or application) frontend for
managing the data components (e.g., migration to and from different mass storage systems) and it
manages use-conditions (PKI access control - see [Johnston97]).

The DPSS provides several important and unique capabilities for the distributed architecture. The
system provides application-specific interfaces to an extremely large space of logical blocks (16-byte
indices); the DPSS may be dynamically configured by aggregating workstations and disks from all
over the network (this is routinely done in the MAGIC testbed [MAGIC], and will in the future be
mediated by the agent-based management system); it offers the ability to build large,
high-performance storage systems from the inexpensive commodity components; and it offers the
ability to increase performance by increasing the number of parallel operating DPSS servers. A cache
management policy interface operates on a per-data set basis to provide block aging and replacement.

The high performance of the DPSS is obtained through parallel operation of independent,
network-based components. Flexible resource management - dynamically adding and deleting
storage elements, partitioning the available storage, etc. - is provided by design, as are high
availability and strongly bound security contexts. The scalable nature of the system is provided by
many of the same design features that provide flexible resource management, which has the capability
to aggregate dispersed and independently owned storage resources into a single cache.

When data sets are identified by the object manager and are requested from tertiary storage, the
logical-to-physical block maps become immediately available. The data mover operates
asynchronously, and if an application “read” requests a block that has not yet been loaded, then the
application is notified (e.g., the read operation blocks). At this point the application can wait or
request information on available blocks in order to continue processing. (STAF reads megabyte-sized
data units, but processes these units independently.)

For the STAF application, file I/O semantics are provided in the DPSS access interface, and reads do
not complete until data is available.

The internal architecture of the DPSS is illustrated in Figure 7

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

7August 16, 1997 5:08 pm [SC97.paper.fm]

.

Typical DPSS implementations consist of several low-cost workstations, each with several SCSI
controllers, and several disks on each controller. A three-server DPSS can thus provide transparent
parallel access to 20-30 disks. The data layout on the disks is completely up to the application, and the
usual strategy for sequential reading applications is to write the data “round-robin” (stripe across
servers), otherwise the block locations are randomized when they are written. (Our experience has
shown that random placement of blocks provides nearly optimal parallelism for a wide range of read
patterns if the number of independent disks is large.)

5.0 Performance Measurement

The combination of generalized, autonomous management of distributed components (e.g., via agents
- see [Where]) and accurate monitoring ofall aspects of the environment in which data moves have
turned out to be critical aspects of the debugging, evaluation, and management of widely distributed,
high data-rate applications.

We have developed an approach for analysis of the operation of distributed applications in high-speed
wide-area networks that is designed to identify all of the issues that affect performance, and to isolate
the problems arising from individual hardware and software components.

Our methodology involves recording every event of potential significance together with precision tim-
stamps, and then correlating events on the basis of the logged information. This allows us to construct

returned data stream
(“third-party” transfers
directly from the storage
servers to the application)

Application
(client)

◆ block storage
◆ block-level access control

Disk Servers

security context - 1
(system integrity &
physical resources)

Application data access
methods

(data structure to logical
block-id mappings - e.g.,

◆ JPEG video
◆ multi-res image pyramids
◆ Unix r/w
◆ XDR

data
requests

security context - 2
(data use conditions)

Agent-based
management of dataset
metadata - locations,

state, etc.

Agent-based
management
of redundant

Masters

Agent-based management of
storage server and network state

vis a vis applications

mem
buf

physical
block

requests logical block
requests

Data Set Manager
◆ user security context

establishment
◆ data set access control
◆ metadata

Request Manager
◆ logical to physical name

translation
◆ cache management

DPSS API
(client-side library)

Resource Manager
◆ allocate disk resources
◆ server/disk resource access

control

DPSS Master

Figure 7 Distributed-Parallel Storage System Architecture

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

8August 16, 1997 5:08 pm [SC97.paper.fm]

a comprehensive view of the overall operation, under realistic operating conditions, revealing the
behavior of all the elements of the application-to-application communications path in order to deter-
mine exactly what is happening within complex distributed systems. In particular, we have instru-
mented our distributed storage system and its client applications to do timestamping and logging at
every critical point. We have also modified some of the standard Unix network and operating system
monitoring tools to log events of interest using a common format. This monitoring functionality is
designed to facilitate performance tuning, distributed application performance research, the character-
ization of distributed algorithms, and the management of functioning systems (by providing the input
that allows adaptation to changes in operating conditions). The approach allows us to measure net-
work performance in a manner that is a much better “real-world” test than, e.g., ttcp, et al, and allows
us to accurately measure the dynamic throughput and latency characteristics of our distributed appli-
cation code -- “top-to-bottom” and “end-to-end”.

Detailed monitoring is also a practical tool for problem analysis, as has been demonstrated in the
analysis of a TCP over ATM problem that was uncovered while developing the monitoring methodol-
ogy in the ARPA-funded MAGIC gigabit testbed (a large-scale, high-speed, ATM network). See
[Tierney1].

The high-level motivation for this work is two-fold.

First, as developers of high-speed network-based distributed services, we often observe unexpectedly
low network throughput and/or high latency. The reason for the poor performance is frequently not
obvious. The bottlenecks can be (and have been) in any of the components: the applications, the oper-
ating systems, the device drivers, the network adapters on either the sending or receiving host (or
both), the network switches and routers, and so on. It is difficult to track down performance problem
because of the complex interaction between the many distributed system components, and the fact
that problems in one place may be most apparent somewhere else.

Second, we want to develop approaches to building predictable, high-speed components that can be
used as building blocks for high-performance applications, rather than having to “tune” the applica-
tions top-to-bottom as is all too common today.

5.1 An Example: The DPSS Timing Facility

To illustrate the approach we describe how it is used in the development and debugging of our
Distributed-Parallel Storage System.

When applications request data blocks from the DPSS, the request lists take the following path (see
Figure 8). A request (a list of data blocks) goes from the application to the name server (“START”),
where the logical block names are translated to physical addresses (server:disk:disk_offset),
then the individual requests are forwarded to the appropriate disk servers. At the disk servers, the data
is read from disk into local cache, and then sent independently to the application (which has connec-
tions to all the relevant servers). Timestamps are gathered before and after each major DPSS function,
such as name translation, disk read, and network send, etc. All timestamps are logged by the DPSS
servers so that the precise timing of each step is noted for each data block. The DPSS specific times-
tamps are sent with the data block back to the requesting application, where logging can be performed
using the DPSS client library. Other events and timestamps are logged using, e.g., the Unixsyslog
facility.

Timestamp consistency is critical for this approach, and is provided by GPS-based Network Time
Protocol (as described below), which allows us to make precise throughput and latency measurements
throughout the widely distributed DPSS system and underlying network. Using this approach, we can

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

9August 16, 1997 5:08 pm [SC97.paper.fm]

pinpoint delays, and their impact on the overall system, to within narrowly-specified steps in the data
path.

OS and Network Layer Monitoring

To complement the monitoring at the application level and in the DPSS, we also monitor various
operating system and network conditions. For example, we currently collect and log the following
types of information on every platform involved in the distributed system:

• TCP retransmits
• CPU usage (user and system)
• CPU interrupts
• AAL 5 information
• ATM switch buffer overflows
• ATM hosts adapter buffer overflow

Common logging format

To process the several gigabytes of log files that can be generated from this type of logging, all events
are logged using a common format (see [Tierney2]):

keyword; hostname; Unix_date_seconds; nano-sec; data; data; data;......;

DPSS master/
name translate

Writer
(output to

net)

memory block cache

♦ recv blk list
♦ search cache

disk
reader

disk
reader

disk
reader

TS-1

TS-3

TS-6

TS-7

TS-5

TS = time stamp

DPSS disk server (one of many)

TS-2

DPSS
server

DPSS
server

START

from
other
disk

servers

disk
reader

TS-6
TS-6

TS-6
Writer

(output to
net)

TS-7

data structure / object access
methods

TS TS TS

request
blksTS-0

receive
blksTS-8

 analysis algorithms

application (e.g., STAF)

1 ms/blk

1 ms/blk

TS-41
6

 m
s

/
b

lk
(a

vg
.
d

is
k

to
 c

a
ch

e
)

(times are measured in a LAN,
with 64 KBy blocks)

0
.7

 m
s/

b
lk

Figure 8 Monitoring for a DPSS application.

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

10August 16, 1997 5:08 pm [SC97.paper.fm]

The “keyword ” is a unique identifier describing what is being logged. By convention, the first part of
the keyword is a reference to the program that is doing the logging (e.g.,DPSS_SERV_IN,

VMSTAT_SYS_CALLS, NETSTAT_RETRANSSEGS, TV_REQ_TILE). Each log entry also contains both the host-
name of the system on which the event occurred and a timestamp.

The end of every logging record can contain any number of “data” elements. These are used to record
any information about the logged event that may later prove useful. For example, the
NETSTAT_RETRANSSEGSevent records one data element, the number of TCP retransmits since the previ-
ous event; theDPSS_START_WRITEevent records the logical block name, the data set ID, a “user ses-
sion” ID, and an internal DPSS block counter; etc.

Log File Analysis Tools

Some of the log records are “associated” by virtue of being collected and carried in the data block
request message as it works its way through the system, and back to the client (this is, of course,
specific to the DPSS). Other records are logged locally or remotely, which allows a quite general
application of these techniques.

Tools to analyze log files include perl scripts4 to extract information from log files, correlate and orga-
nize events based on time stamps, process name, and system identity, and write data files in a format

suitable for using gnuplot5 to present the results for analysis. These tools were used to generate the
analytical graphs below.

In our previous work, the operation history re-assembly and analysis has been after-the-fact, which is
useful for diagnostic and design change evaluation, but less so for monitoring running systems. Our
current approach is to have agent-based monitoring and management components as an integral part
of the distributed system, and these agents collect and analyzenetlogger data in real time. (See
[Where].)

Use of NTP

The DPSS name server, DPSS disk server, and application are typically on different physical hosts
scattered over the network. To be able to perform meaningful analysis of a network-based system
using timestamps, the clocks of all systems involved must be synchronized. In the MAGIC testbed,
for example, all systems run thexntpd program [Mills], which synchronizes the clocks of each host.
The MAGIC backbone segments are used to distribute GPS time via NTP, allowing the clocks of all
hosts to synchronize within about 250 microseconds of each other. It has been our experience, at least
so far in the wide-area, that almost all application-significant events can be accurately characterized
by timestamps that are accurate to 0.5 ms, so the 250 microsecond accuracy is just right.

5.2 Analysis of Performance Experiments

Experiments have been performed to examine the detailed interaction between a DPSS, whose disk
servers are distributed over both ATM LANs and a wide-area ATM network, and several applications.
Our initial monitoring experiments focused on high-performance, highly distributed applications such
as the TerraVision <=> DPSS combination, and these experiments (see [Tierney1]) illuminate the
methodology, so we consider the analysis of one of these experiments that also provides a nice exam-
ple of how data algorithms reflect in the measurements.

4. For more information see: http://www.metronet.com/perlinfo/perl5.html

5. For more information see: http://www.cs.dartmouth.edu/gnuplot_info.html

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

11August 16, 1997 5:08 pm [SC97.paper.fm]

One of the block request semantics supported by the DPSS, and used by TerraVision, is that any time
a new list of data block requests comes in, all pending requests are discarded (on a per-user and
per-data set basis). This is one method by which applications can both pre-fetch data, and even be
speculative about what data they will need in the near future. Pre-fetching is critical for maximum
data performance because the DPSS is fairly heavily pipelined, and that pipeline must be kept full to
deliver the maximum data rate. With a pre-fetch request, even if the DPSS cannot send all the
requested data to the application, it is possible that the data was at least read from disk into the DPSS
memory cache where it will remain available for faster retrieval (for a short time). This approach
ensures that the data pipeline stays full and that disk server resources are never idle.

To date, the single most useful analysis technique for thenetlogger data has been to construct and
examine the data paths through the various system components, correlated in time with related events.
These paths (“lifelines”) are characterized by the time of the actions, events, or operations in all of the
system components. So, for example, the DPSS actions, together with the TCP retransmit events, are

plotted vertically and the corresponding times horizontally in Figure 9. Each “single” line
corresponds, in the case of a DPSS application, to the life of a data request, from application request
of a data block, to receipt by the application. These lifelines have characteristic shapes and

Figure 9 One Server Test (ATM LAN, one SS-20 as server, tv_sim on DEC 3000/600)

app_send

master_in

master_out

server_in

start_read

end_read

start_write

app_receive

TCP_retrans

M
on

ito
r

P
oi

nt
s

Time (ms)

(net transit)

(name xlate)

net transit)

(read

(disk read)

(network

(net transit)

write
queue)

queue)

10500 11000

“iss.log”

“iss.flush.log”

c

b

a

≈10600≈10400

d

≈10200 ≈10800

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

12August 16, 1997 5:08 pm [SC97.paper.fm]

relationships that represent how the various algorithms in the system operates in the face of different
environmental situations (e.g., network congestion).

Referring to Figure 9 and Figure 10, TerraVision sends a list of data requests every 200 ms, as shown
by the nearly vertical lines starting at theapp_sendmonitor points. The initial single lifelines fan out
at theserver_inmonitor point as the requests resolve themselves in time and are placed in the disk
read queues. So, each block request is first represented individually in the disk server read queue.

The traffic rates into and out of the name translation server (“master”) are very low, and while
latencies in this service would have a significant impact on overall performance, this has not yet been
an observable problem. (This is indicated in the figures showing block trace data where the difference
betweenapp_sendandserver_inmonitor points represent the total latency to get the data requests out
of the application, through the network, translated, and received by the server(s).)

The average read time is a figure of merit for the disks (seek + latency + read). Individual disk reads
are a significant component of the overall performance, and most DPSSs have many disks in order to
parallelize this operation.

As an indication of the sensitivity of this type of monitoring, consider the disk read signature in
Figure 10. When two lifelines cross in the area betweenstart_readandend_read, this indicates that a
read from one disk was faster than a read from another disk. (This phenomenon is clearly illustrated
for the server represented by the crossing solid lines in Figure 10 at .) This faster read might be
from disks with faster seek and read times (which was not the case in the experiment represented in
Figure 9, as all participating systems used identical disks) or it might be due to two blocks being
adjacent on disk so that no seek is required. However, given the two distinct groupings around 10ms
and 20 ms, this probably characterizes the two different types of disks that were on the disk server
used in this experiment.

In the experiment represented in Figure 9, the fact that most requests appear to be flushed at the
end_readpoint (which actually indicates that the block is in the server send queue) rather than at
start_readpoint (in the read queue) indicates that the network and/or application host is more of a
bottleneck than the disks in the test configurations. If the disks were the bottleneck, then there would
be more lines ending atstart_read, because that is where the requests would be stalled when the next
request arrives, and therefore where the “lifeline” is terminated by a flush.

Also in Figure 9, notice that many lifelines terminate atend_read.Any individual data request that is
not satisfied by the disk server before the next request list arrives is flushed (discarded) from all the
queues, but the data is retained in the memory cache if it was read from disk. The lifelines that started
at 10,400 ms and were terminated at , did so because the TCP write delay (probably caused by the

retransmit event a little beyond 10,600ms, the time of which was not precisely obtained) at
“trapped” those blocks in the TCP write buffer. Block requests that were in the DPSS write queue
when the next request list arrived (at 10,600 ms) were flushed from the queue. However, some of
these blocks were re-requested in the 10,600 ms list, and these re-requests are satisfied very quickly
because the data is in the disk server memory cache. This is seen in the nearly vertical lifelines at .

A

b

c

d

 Law
rence B

erkeley N
ational Laboratory

W
E

Johnston@
lbl.gov

13
A

ugust 16, 1997 5:08 pm
[S

C
97.paper.fm

]

app_send

master_in

master_out

server_in

start_read

end_read

start_write

app_receive

TCP_retrans

8000 8200

B: fast disk
read:
8 ms

C: 20 block average time to write
blocks to network:

8.65 ms

D: 20 block average time spent in
read queue: 5 ms

F: time for 20 blocks to get from one server
writer to the application reader

total: 204 ms, avg: 10.2 ms
38.5 Mb/sec

B: typical
disk read:

22 ms

Time (ms)

g
p

“iss3.log”

“iss2.log”

G: cache hits
(zero read

time)

E: time to read 20 blocks from three disks
total:123 ms, avg: 6.15 ms
8 MBy/sec (63.7 Mb/sec)

A

net transit

name xlate

net transit

read queue

disk read

write queue

net transit

length of the

“pipeline” (≈ 60 ms)

(current servers are more than
twice this rate)

(current
value is

about 30ms)

Figure 10 Detail From a Two Server, LAN, Experiment

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

14August 16, 1997 5:08 pm [SC97.paper.fm]

Using these lifeline graphs it is also possible to get fairly detailed information on individual
operations within the disk servers. Such detailed performance analysis is illustrated in Figure 10, for
example, and shows us:

• at “B” two different characteristic disk reads (one with an 8 ms read time and one with a 22 ms
read time);

• at “C” the time to cache a block and enter it into the network write queue is about 8.6 ms;
• at “D” the time to parse the incoming request list and see if the block is in the memory cache is

about 5 ms;
• at “E” the overall (four disks operating in parallel) server data read rate is about 8 MB/sec;
• at “F” the actual throughput for this server while dealing with real data requests is about 39

Mb/s (the throughput is receiver limited in this case, and the “unconstrained” throughput is
about three times that number);

• at “G”, there are two cache hits (blocks found in memory) as a result of previously requested,
but not sent, data being requested.

Figure 11 illustrates “correct” operation of multiple servers. This LAN-based, two-server experiment

shows the interaction of lifelines for blocks from different servers, and a case where the independent
servers are behaving almost “perfectly”: there are very regular block delivery patterns that alternate
almost one-for-one between servers. Every lifeline termination atapp_receive line indicates 64 kBy
of data delivered to the application. Note that in many cases the two DPSS servers delivered data
almost simultaneously, and so the lines overlap.

Figure 11 Two Server Test (ATM LAN, two SS-20s as servers, tv_sim on DEC 3000/600)

app_send

master_in

master_out

server_in

start_read

end_read

start_write

app_receive

TCP_retrans

8000 8200 8400 8600 8800 9000 9200

“iss3.log”
“iss2.log”

M
on

ito
rin

g
po

in
ts

Time (ms)

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

15August 16, 1997 5:08 pm [SC97.paper.fm]

6.0 STAF Experiment

The physics data handling experiment is divided into several parts. In the first part we are trying to
model the analysis (phase 2) environment. In a production configuration, it is expected that several
hundred processors will operate in parallel, each on a single experiment “event” (1 - 10 MBy of data).
The data archive query interface will select a set of tapes and records on the tertiary storage system.
The current model has the storage system interface being 3-5 high-speed tape drives operating in
parallel (each of which delivers about 9 MBy/s). This data is written to a DPSS from which STAF
accesses the data.

Performance for the STAF application accessing data in the cache was measured using a DPSS
configuration of three disk servers with two disks per server. STAF requests that data be loaded into
memory-resident objects that are defined by serialized (XDR-encoded) records. Deserializing, in turn,
causes data requests to be made through the DPSS file semantics interface which collects blocks from
the DPSS servers, buffers them, and provides access to the buffer. The throughput rates are measured
as data is delivered to the STAF physics analysis modules, a path that includes translating the data to
the appropriate machine format and structuring it in memory (both of which are very fast operations).
With a single instance of STAF running on a Sun E4000 system with an OC-12 (622 Mbit/s) ATM
interface, a data rate of 22 megabytes/s is achieved for reading data, and 30 megabytes/s for writing
data.

Using the experiment setup of Figure 12, and running 10 instances of the application simultaneously,
results in the same aggregate throughput. This is illustrated in Figure 13 where each horizontal set of

CPU

CPU

CPU

CPU

Mem

I/O

“high speed” data
acquisition in

laboratory

8 CPU Sun E4000

CPU

CPU

CPU

CPU

Mem

I/O

AT
M

tertiary (mass)
storage

AT
M

parallel disks

remote compute
node

CPU

CPU

Mem

I/O

AT
M

ATM
WAN

DPSS

OC-3

OC-12

OC-12

OC-12

Data
Mover

4 x 100 Mbs
Ether

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

8 CPU Sun E4000

ATM
LAN

10 processes
reading

10 processes
writing

Figure 12 Experiment setup.

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

16August 16, 1997 5:08 pm [SC97.paper.fm]

lifeline traces represents the data delivered to the STAF application (each request is for 10 megabytes
of data, so each horizontal set represents a gigabyte of data delivered to the application). Moving
vertically in the graph shows data being delivered to the individual instances of STAF. The traces are,
of course, time correlated using the techniques described above, so that the whole graph represents
the behavior of the overall system of ten applications operating in parallel accessing the same three
disk servers to get data. Ignoring the application start-up and termination anomalies (which have
reasonable explanations that are unrelated to the current discussion) the delivery of data to the
applications is relatively smooth and fair. The sum of all lifelines in the graph show 10 gigabytes of
data being delivered over a period of about 500 seconds, or about 20 megabytes/sec aggregate data
delivery.

Figure 13 Three DPSS servers delivering 10 gigabytes of data to 10 parallel applications.

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

17August 16, 1997 5:08 pm [SC97.paper.fm]

7.0 An Experiment in High-Speed, Wide Area Distributed Data Handling With Many Clients

Reviewing the framework described in Section 3.0, we see that the first-level data from the instrument
system flows from the instrument, through the network, to a receiving cache (See Figure 1a). The
DPSS is used for this cache, the servers of which may be located at one site, or (as in the MAGIC
testbed) distributed across many sites. The first level of processing can be done directly out of the
cache. The first-level data is also moved from cache to tertiary storage, and the results of this
processing can be used to optimize data placement on tertiary storage. (As noted above, the write
rates into the DPSS should be sufficient for this approach.)

It is our contention that in the time frame of the next generation of physics experiments (2000-2005
AD), wide area networks will be easily capable of distributing the instrument output data stream
anywhere in the US (and probably to Europe).

Distributing experimental data has two potential advantages. First, the first-level processing (which is
easily parallelized) can be done using resources at the collaborators’ sites (each experiment typically
involves 5-10 major institutions). Second, large tertiary storage systems exhibit substantial economies
of scale, and so using a large tertiary storage system at, say, a supercomputer center, should result in
more economical storage, better access (because of much larger near-line systems - e.g., lots of tape
robots) and better media management, especially in the long term, than can be obtained in local
systems.

We are testing the wide-area aspects of the framework in the following experiment. A DPSS and a
computing cluster are located at Lawrence Berkeley National Laboratory (LBNL). The NTON
network testbed [NTONC] that connects Berkeley and Lawrence Livermore National Laboratory
(LLNL) can be configured for a 2000 km, OC-12, path (by using the 16 OC-12 SONET paths that
make up the 400 km underlying network). A high-speed workstation that has a collection of STAR
events stored on its disks is located at LLNL and connected to NTON. This workstation will emit
events at the same rate as the STAR detector, and this data will be cached on the DPSS at Berkeley.
The computing cluster will process data out of the cache (doing “reconstruction”) and those results
will be written back to the cache. A storage manager will migrate data to tertiary storage (or a “null”
system that has the same throughput characteristics, as there is little point in actually storing this
synthetic data).

Except that the computing cluster will not have sufficient compute capacity to do all of the required
processing at the operating data rates, this scenario - once it works as expected - should demonstrate
the feasibility of wide area processing of this type of real-time data. The experiment is illustrated in
Figure 14.

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

18August 16, 1997 5:08 pm [SC97.paper.fm]

8.0 Conclusions

The experiments described here are work-in-progress. The use of the DPSS as cache has
demonstrated the required performance, functionality, and level of abstraction (the common interface
concept), but a complete demonstration of scalability requires running hundreds of analysis
processes. The wide area, high data-rate experiment configuration is nearly complete, and results are
expected in the near future. We expect that this experiment will be successful, because several
precursors have been carried out in the MAGIC testbed. However, experience has also shown that
every significant increase in throughput and/or scale raises a new set of issues. More results will
reported at http://www-itg.lbl.gov/DPSS as they are obtained.

9.0 References

DIGLIB “Real-Time Generation and Cataloguing of Large Data-Objects in Widely Distributed
Environments”, W.Johnston, Jin G., C. Larsen, J. Lee, G. Hoo, M. Thompson, B. Tierney, J.
Terdiman. To be published in International Journal of Digital Libraries - Special Issue on
“Digital Libraries in Medicine”. Available at http://www-itg.lbl.gov/WALDO.

DPSS “The Distributed-Parallel Storage System (DPSS)”. See http://www-itg.lbl.gov/DPSS.

Greiman97H Greiman, W., W. E. Johnston, C. McParland, D. Olson, B. Tierney, C. Tull,
“High-Speed Distributed Data Handling for HENP”. International Conference on Computing in

Figure 14 The Distributed Processing Experiment

LBNL

0 5 Mi. 10 Mi.

UCSF

Mt Zion

Sprint
ATM switch
Burlingame

LLNL
NTON access

point

Pacific Bell
Oakland CO

UC Berkeley

NTON
4 × 2.5 Gbit/s all optical

network testbed
(potentially configurable as

2000km of OC-12)

Pacific Bell
San Francisco

CO

to MAGIC
testbed

SMP
CCCCCCCC

SMP
CCCCCCCC

SMPCCCCCCC

ATM
switch

tertiary (mass)
storage

NOW
network parallel

disk system

Data Source:
STAR detector simulator:

20-40 MBy/s “event”
source

LLNL

ATM
switch

UCB
NTON

access point

STAR prototype analysis and
on-line storage environment

Stanford

SRI

XEROX

Ames

San Jose

OC-12
(622 Mb/s)OC-48

(2.5 Gb/s)

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

19August 16, 1997 5:08 pm [SC97.paper.fm]

High Energy Physics, Berlin, Germany, April, 1997. Also available at
http://www-itg.lbl.gov/STAR.

Johnston95V W. Johnston, and D. Agarwal, “The Virtual Laboratory: Using Networks to Enable
Widely Distributed Collaboratory Science” A NSF Workshop Virtual Laboratory whitepaper.
(See http://www-itg.lbl.gov/~johnston/Virtual.Labs.html)

Johnston97 “Security Architectures for Large-Scale Remote Collaboratory Environments: A
Use-Condition Centered Approach to Authenticated Global Capabilities”. W. Johnston and C.
Larsen, (draft at http://www-itg.lbl.gov/security/publications.html)

Lau94 “TerraVision: a Terrain Visualization System”. S. Lau, Y. Leclerc, Technical Note 540, SRI
International, Menlo Park, CA, Mar. 1994. Also see:
http://www.ai.sri.com/~magic/terravision.html.

MAGIC “The MAGIC Gigabit Network”, See: http://www.magic.net/

Mills “Simple Network Time Protocol (SNTP)”. D. Mills, RFC 1361, University of Delaware,
August 1992.

NTONC “National Transparent Optical Network Consortium”. See http://www.ntonc.org. (NTONC
is a program of collaborative research, deployment and demonstration of an all-optical open
testbed communications network.)

Olson “HENP Data Analysis Requirements.” D. Olson, C. McParland, W. Johnston, and W.
Greiman. http://www-rnc.lbl.gov/computing/ldrd_fy97/html/star_reqs.htm

STAR1 “Relativistic Nuclear Collisions Program”, H.G. Ritter.
http://www-library.lbl.gov/docs/LBNL/397/64/Overviews/RNC.html

STAR2 “High Speed Distributed Data Handling for HENP”, W. Greiman, W. E. Johnston, C.
McParland, D. Olson, B. Tierney, C. Tull.
http://www-rnc.lbl.gov/computing/ldrd_fy97/henpdata.htm

Tull97 “The STAR Analysis Framework Component Software in a Real-World Physics
Experiment”. C.Tull, W.Greiman, D.Olson, D.Prindle, H.Ward, International Conference on
Computing in High Energy Physics, Berlin, Germany, April, 1997.

Tierney1 “Performance Analysis in High-Speed Wide Area ATM Networks: Top-to-bottom
end-to-end Monitoring”, B. Tierney, W. Johnston, J. Lee, G. Hoo. IEEE Networking, May
1996. An updated version of this paper is available at
http://www-itg.lbl.gov/DPSS/papers.html.

Tierney2 “NetLogger Toolkit: A Methodology and Set of Tools for Network and Distributed
System Performance Analysis”, B. Tierney. Available at http://www-itg.lbl.gov/DPSS/logging.

Where “WHERE: Wide-area Helpers Enabling Reliable Environments”
http://www-itg.lbl.gov/DPSS/agents/WHERE.html

