
System Issues in Implementing High Speed Distributed Parallel Storage
Systems

Brian Tierney (bltierney@lbl.gov),
Bill Johnston1 (wejohnston@lbl.gov),

Hanan Herzog, Gary Hoo, Guojun Jin, Jason Lee

Imaging Technologies Group
Lawrence Berkeley Laboratory2

Berkeley, CA 94720

Abstract

In this paper we describe several aspects of implementing a high speed network-based distributed applica-
tion. We describe the design and implementation of a distributed parallel storage system that uses high speed
ATM networks as a key element of the architecture. The architecture provides what amounts to a collection
of network-based disk block servers, and an associated name server that provides some file system function-
ality. The implementation approach is that of user level software that runs on UNIX workstations. Both the
architecture and the implementation are intended to provide for easy and economical scalability in both per-
formance and capacity. We describe the software architecture, the implementation and operating system
overhead issues, and our experiences with this approach in an IP-over-ATM WAN. Although most of the
paper is specific to a distributed parallel data server, we believe many of the issues we encountered are gen-
erally applicable to any high speed network-based application.

1.0  Introduction

In recent years many technological advances have made distributed multimedia servers a reality, and people
now desire to put “on-line” large amounts of information, including images, videos, and hypermedia data-
bases. Increasingly, there are applications that demand high-bandwidth access to this data, either in single
user streams (e.g., large image browsing, uncompressible scientific and medical video, and multiple coordi-
nated multimedia streams) or, more commonly, in aggregate for multiple users. Here we describe a network
distributed data server, called the Image Server System (ISS). The ISS is being used to supply data to a ter-
rain visualization application that requires 300-400 Mbits/s of data to provide a realistic visualization. Both
the ISS and the application have been developed in the context of the MAGIC Gigabit testbed ([5] and [11]).

1. Correspondence should be directed to Bill Johnston, Lawrence Berkeley Laboratory, Bldg. 50B - 2239, Berkeley, CA,
94720. Tel: 510-486-5014, fax: 510-486-6363).

2. This work is jointly supported by ARPA - CSTO, and by the U. S. Dept. of Energy, Energy Research Division, Office
of Scientific Computing, under contract DE-AC03-76SF00098 with the University of California. This document is LBL
report LBL-35775.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement or recommendation by the United States Govern-
ment or the University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California, and shall not be used for advertising or
product endorsement purposes.

The following terms are acknowledged as trademarks: UNIX (Novell, Inc.), Sun and SPARCStation (Sun Microsystems,
Inc.), DEC and Alpha (Digital Equipment Corp.), SGI and Indigo (Silicon Graphics, Inc.), Seagate, Inc.



To address a point frequently raised, compression is not practical in the case of terrain visualization because
the cost of decompression is prohibitive in the absence of suitable hardware implementations.

To comment briefly on the relevant technologies, current disk technology delivers about 4 Mbytes/s (32
Mbits/s), a rate that has improved at about 7% each year since 1980 [10], and there is reason to believe that
it will be some time before a single disk is capable of delivering streams at the rates needed for the applica-
tion mentioned. While RAID [10] and other parallel disk array technologies can deliver higher throughput,
they are still relatively expensive, and do not scale well (at least economically), especially in the scenario of
multiple network-distributed users (where we assume that the sources of data, as well as the multiple users,
will be widely distributed). Wide area Asynchronous Transfer Mode (ATM) networks are being built on a
SONET infrastructure, which has the characteristic that bandwidth aggregates upward (contrary to our cur-
rent network hierarchy, where the slowest networks are at the top of the hierarchy). This characteristic makes
it possible to use the network to aggregate many low-speed sources into a single high-speed stream.

The approach described here differs in many ways from RAID, and should not be confused with it. RAID
uses a particular data layout and redundancy strategy to secure reliable data storage and parallel disk opera-
tion. Our approach, while using parallel disks and servers, imposes no particular layout strategy (in fact, this
is deliberately left to the application domain), and is implemented entirely in software (though the data
redundancy idea of RAID might be applied across servers).

At the present state of development and experience, the system we describe is used primarily as a large, fast
“cache” for image or multimedia data. In our approach, reliability with respect to data corruption is provided
by the usual OS and disk controller-level mechanisms, and reliability of the overall system is a function of
user-level strategies of data replication. The data of interest (tens to hundreds of GBytes) is typically loaded
from archival tertiary storage, or written into the system from live video sources. (In the latter case, the data
is also archived to bulk storage in real-time.)

The Image Server System is an example of distributed parallel data storage technology. It is a multimedia
file server that is distributed across a wide area network to supply data to applications located anywhere in
the network. This system is not a general purpose, distributed file system in that the data units (“files”) are
assumed to be large and relatively static. The approach allows data organization to be determined by the user
as a function of data type and access patterns. For most applications, the goal of data organization is that data
should be declustered across both disks and servers (that is, dispersed in such a way that as many system ele-
ments as possible can operate simultaneously to satisfy a given request). This declustering allows a large
collection of disks to seek in parallel, and allows all servers to send the resulting data to the application in
parallel, enabling the ISS to perform as a high-speed image server. Architecturally, the ISS is a distributed,
parallel mass storage system that uses UNIX workstation technology to provide a low-cost, scalable imple-
mentation. The data transport is via TCP/IP or RTP/IP[13]. The scalability arises from the high degree of
independence among the servers: both performance and capacity may be increased, in essentially linear
fashion, by adding servers. (Ultimately this is limited by the parallelism inherent in the data.) The general
idea is illustrated in Figure 1 (Data Streams Aggregated by ATM Switches).

In our prototypes, the typical ISS consists of several (four - five) UNIX workstations (e.g. Sun SPARCSta-
tion, DEC Alpha, SGI Indigo, etc.), each with several (four - six) fast-SCSI disks on multiple (two - three)
SCSI host adaptors. Each workstation is also equipped with an ATM network interface. An ISS configura-
tion such as this can deliver an aggregated data stream to an application at about 400 Mbits/s (50 Mbytes/s)
using these relatively low-cost, “off the shelf” components by exploiting the parallelism provided by approx-
imately five hosts, twenty disks, ten SCSI host adaptors, and five network interfaces.

2.0  Related Work

In some respects, the ISS resembles the Zebra network file system, developed by John H. Hartman and John
K. Ousterhout at the University of California, Berkeley [4]. Both the ISS and Zebra can separate their file
access and management activities across several hosts on a network. Both try to maintain the availability of
the system as a whole by building in some redundancy, allowing for the possibility that a disk or host might



be unavailable at a critical time. The goal of both is to increase data throughput despite the current limits on
both disk and host throughput.

However, the ISS and the Zebra network file system differ in the fundamental nature of the tasks they per-
form. Zebra is intended to provide traditional file system functionality, ensuring the consistency and correct-
ness of a file system whose contents are changing from moment to moment. The ISS, on the other hand, tries
to provide extremely high-speed, high-throughput access to a relatively static set of data. It is optimized to
retrieve data, requiring only minimum overhead to verify data correctness and no overhead to compensate
for corrupted data.

There are other research groups working on solving problems related to distributed storage and fast multi-
media data retrieval. For example, Ghandeharizadeh, Ramos, et al., at USC are working on declustering
methods for multimedia data [3], and Rowe, et al., at UCB are working on a continuous media player based
on the MPEG standard [12].

3.0  Applications

There are several target applications for the initial implementation of the ISS. These applications fall into
two categories: image servers and multimedia / video file servers.

ISS disk server

ATM
network
interface

workstation

image segments

ISS disk server

ATM

workstation

image segments

ISS disk server

workstation

image segments

ATM switch

single high bandwidth sink (or source)

Parallel Data and Server Architecture Approach to the Image Server System

ATM network (interleaved cell streams
representing multiple virtual circuits)

ATM
network
interface

Figure 1 Data Streams Aggregated by ATM Switches



3.1  Image Server

The initial use of the ISS is to provide data to a terrain visualization application in the MAGIC testbed3. This
application, known as TerraVision [5], allows a user to navigate through and over a high resolution land-
scape represented by digital aerial images and elevation models. TerraVision is of interest to the U.S. Army
because of its ability to let a commander “see” the battlefield. TerraVision is very different from a typical
“flight simulator”-like program in that it uses large quantities of high resolution aerial imagery for the visu-
alization instead of simulated terrain. TerraVision requires large amounts of data, transferred at both bursty
and steady rates. The ISS is used to supply image data at hundreds of Mbits/s rates to TerraVision. We are
not using any data compression for this application because the bandwidth requirements for TerraVision are
such that real-time decompression is not possible without using special purpose hardware.

In the case of a large-image browsing application like TerraVision, the strategy for using the ISS is straight-
forward: the image is tiled (broken into smaller, equal-sized pieces), and the tiles are scattered across the
disks and hosts of the ISS. The order of images delivered to the application is determined by the application
predicting a “path” through the image (landscape), and requesting the tiles needed to supply a view along the
path. The actual delivery order is a function of how quickly a given server can read the tiles from disk and
send them over the network. Tiles will be delivered in roughly the requested order, but small variations from
the requested order will occur. These variations must be accommodated by buffering or other strategies in
the client application.

This approach can supply data to any sort of large-image browsing application, including applications for
displaying large aerial-photo landscapes, satellite images, X-ray images, scanning microscope images, and
so forth.

3.2  Video Server

Examples of video server applications include video players, video editors, and multimedia document
browsers. A video server might contain several types of stream-like data, including conventional video, com-
pressed video, variable time base, multimedia hypertext, interactive video, and others. Several users may be
accessing the same video data at the same time, but may be at different frames in the stream. This affects
many factors in an image server system, including the layout of the data on disks. Since there is a predict-
able, sequential pattern to the requests for data, the data would be placed on disk in a like manner. Large
commercial concerns such as Time Warner and U.S. West are building large-scale commercial video servers
such as the Time Warner / Silicon Graphics video server [6]. Our approach may address a wider scale, as
well as a greater diversity, of data organization strategies so as to serve the diverse needs of schools, research
institutions, and hospitals for video-image servers in support of various educational and research-oriented
digital libraries.

3.3  Application to ISS Interface

Application access to the ISS is through a client-side library that accepts requests for data, and returns data
to the application. The client library obtains from the ISS Master a list of ISS Disk Servers (q.v.) that have
data for the area of interest. The client library establishes connections to all ISS Disk Servers containing that
data set. The application specifies the location of a memory buffer to receive incoming data.

The current implementation provides access to large images, in which the unit of data is a tile. The applica-
tion requests data in terms of lists of tiles, and the tiles sent by the ISS servers are placed into the applica-
tion’s buffer. (See Figure 2 (Application Architecture).)

3. MAGIC (Multidimensional Applications and Gigabit Internetwork Consortium) is a gigabit network testbed that was
established in June 1992 by the U. S. Government’s Advanced Research Projects Agency (ARPA)[11]. MAGIC’s charter
is to develop a high-speed, wide-area networking testbed that will demonstrate interactive exchange of data at giga-
bit-per-second rates among multiple distributed servers and clients using a terrain visualization application.



3.4  Data Prediction

Data prediction is important to ensure that the ISS is utilized as efficiently as possible. By always requesting
more tiles than the ISS can actually deliver before the next tile request, we ensure that no component of the
ISS is ever idle. For example, if most of a request list’s images were on one server, the other servers could
still be reading and sending or caching images that may be needed in the future, instead of idly waiting. The
point of the path prediction is to provide a rational basis for pre-requesting tiles.

As an example of path prediction, consider an interactive video database with a finite number of possible
branch points. (A “branch point” occurs where a user might select one of several possible play clips.) As a
branch point is approached by the player, the predictor (without knowledge of which branch will be taken)
will start requesting images (frames) along both branches. These images are cached first at the disk servers,
then at the receiving application. As soon as a branch is chosen, the predictor ceases to send requests for
images from the other branch. Any cached but unsent images are flushed as better predictions fill the cache.

For MAGIC’s TerraVision, prediction is based on geometric characteristics of the path being followed, the
limitations of the mode of simulated transport (that is, walking, driving, flying, etc.), the intended destina-
tion, and so on. The prediction results in a priority ordered list of tile requests being sent to the ISS. The ISS
has no knowledge of the prediction strategy (or even if one has been used).

The client will keep asking for an image until it shows up, or until it is no longer needed (e.g. the application
may have “passed” the region of landscape that involves the image that was requested, but never received.)
Applications will have different strategies to deal with images that do not arrive in time. For example, Ter-
raVision keeps a local low resolution data set to fill in for missing tiles.

Prediction is transparent to the ISS, and is manifested only in the order and priority of images in the request
list. The prediction algorithm is mostly a function of the client application, and typically runs on the client.
Prediction could also be done by a third-party application. The aforementioned interactive video database,
for example, might use a third-party application for prediction.

4.0  Design

4.1  Goals

The following are some guidelines we have followed in designing the ISS:

Figure 2 Application Architecture

Application

Client ISS I/O library

ISS disk server

ISS disk server

ISS disk server
request tiles

Name server

requests

user buffer
data returned to



• The ISS should be capable of being geographically distributed. In a future environment of large-scale,
mesh-connected national networks, network-distributed storage should be capable of providing an
uninterruptable stream of data, in much the same way that a power grid is resilient in the face of
source failures, and tolerant of peak demands because of multiple sources multiply interconnected.

• The ISS approach should be scalable in all dimensions, including data set size, number of users, num-
ber of server sites, and aggregate data delivery speed.

• The ISS should deliver coherent image streams to an application, given that the individual images that
make up the stream are scattered (by design) all over the network. In this case, “coherent” means “in
the order needed by the application.” No one disk server will ever be capable of delivering the entire
stream. The network is theserver.

• The ISS should be affordable. While something like a HIPPI-based RAID device might be able to pro-
vide the functionality of the ISS, this sort of device is very expensive, is not scalable, and is a single
point of failure.

4.2  Research Issues

The design goals present several issues that need to be addressed. These include:

•  How to store and retrieve image data at gigabit speeds using a storage system whose servers are
widely distributed;

• How to place data blocks (tiles) such that image data will be distributed across many storage servers in
a way that ensures parallel operation;

•  How to handle high-speed IP transport over ATM networks to provide the parallel data paths needed
to aggregate medium-speed disk servers into a logically integrated, high-speed image storage server.
(Although ATM will probably become the Ethernet of the future, end-to-end networks will be hetero-
geneous for a long time to come, necessitating the use of an internetwork protocol, of which IP is the
clear choice);

•  Assessing how an ATM network will behave (or misbehave) under the conditions of multiple, coordi-
nated, parallel data streams.

4.3  Approach:A Distributed, Parallel Server

The ISS design is based on the use of multiple low-cost, medium-speed disk servers which use the network
to aggregate server output into a single high-bandwidth stream. To achieve high performance we exploit all
possible levels of parallelism, including that available at the level of the disks, controllers, processors/mem-
ory banks, servers, and the network. Proper data placement strategy is also key to exploiting system parallel-
ism. For placement of image tile data, an application-related program declusters tiles so that all ISS disks are
evenly accessed by tile requests, but clusters tiles that are on the same disk[1]. This strategy is a function of
both the data structure (tiled images) and the geometry of the access (e.g., paths through the landscape). Cur-
rently we are working on extending these methods to handle video-like data.

At the individual server level, the approach is that of a collection of disk managers that move requested data
to memory cache. Depending on the nature of the data and its organization, the disk managers may have a
strategy for moving other closely located and related data from disk to memory as a side effect of a particu-
lar data request. However, in general, we have tried to keep the implementation of data prediction (determin-
ing what data will be needed in the near future) separate from the basic data moving function of the server.
Prediction might be done by the application, or it might be done be a third party that understands the data
usage patterns. In any event, the server sees only lists of requested blocks.

As explained below, the dominant bottlenecks for this type of application in a typical UNIX workstation are,
first, memory copy speed, and second, network access speed. For these reasons, an important design crite-
rion is to use as few memory copies as possible, and to keep the network interface operating at full band-



width all the time. Our implementation uses only three copies to get data from disk to network, so maximum
server throughput is about (mem_copy_speed / 3).

Another important aspect of the design is that all components are instrumented for timing and data flow
monitoring in order to characterize the ISS implementation and the network performance. To do this, all
communications between ISS components are timestamped. We are using GPS (Global Positioning System)
receivers and NTP (Network Time Protocol) [9] [8] to synchronize the clocks of all ISS servers and of the
client application in order to accurately measure network throughput and latency.

5.0  ISS Architecture and Implementation

The following is a brief overview of a typical ISS operation. A data set must first be loaded across a given set
of ISS hosts and disks, and a table containing disk/offset locations for each block of data is stored on each
host. The application sends requests for data (images, video, sound, etc.) to the Name Server process on each
Disk Server host, which does a lookup to determine the location (server - disk - offset) of the requested data.
If the data is not stored on that host, the request is discarded with the assumption that another host will han-
dle it; otherwise the list of locations is passed to the ISS Disk Server. Each Disk Server then checks to see if
the data is already in its cache, and if not, fetches the data from disk and transfers it to the cache. Once the
data is in the cache, it is sent to the requesting application.

In the following sections, we describe the basic software modules, their functions, how they relate to each
other, and some of the terms and models that were used in the design of the ISS. Figure 3 (ISS Server Archi-

tecture) shows how the components of the ISS relate to each other.

Name
Server

send
tiles

cache

read
tile list

ISS disk server

disk
reader

disk
reader

disk
reader

disk
reader

network

cache manager

tile (image)

requests

Figure 3 ISS Server Architecture



5.1  ISS Master

The ISS Master process is responsible for application-to-ISS startup communication, Disk Server process
initialization, performance monitoring, and coordination between multiple ISS Disk Servers. This includes
the ability to collect performance and usage statistics of all ISS components. In the future, we plan to extend
the functionality of the Master to dynamically reconfigure ISS Disk Server usage to avoid network or ISS
Disk Server bottlenecks.

5.2  Name Server

The Name Server listens for tile request lists from the application. After receiving a list, the Name Server
does a table lookup to determine where the data is located (i.e. which server, which disk, and the disk offset).
The Name Server then passes this list to the ISS Disk Server.

5.3 ISS Disk Server

There is one ISS Disk Server process for each ISS host. It is responsible for all ISS memory buffer and
request list management on that host. The Disk Server receives image requests from the Master process, and
determines if the image is already in its buffer cache. If it is already in the buffer cache (which is kept
entirely in available memory), the request is added to the “to send” list. Otherwise, it is added to a “to read”
list. Tile requests that have not been satisfied by the time the next list from the Master process arrives are
“flushed” (discarded) from the lists. All requests that haven’t been either read off of disk or written to the
network interface are removed from all request lists, and any memory buffers waiting to be written are
returned to the hash table. Note that if a tile read has completed, but the tile has not yet been sent to the net-
work, the data stays in the cache, so that if that tile is in the next request list it will be sent first. Those buffers
that were waiting to be filled with data from the disk are put at the head of an LRU (Least Recently Used) list
so they may be used for requests in the newly arrived list. The Disk Server process also periodically sends
status information to the Master.

ISS buffer management is very similar to that of the UNIX operating system, and many of the ideas for lists,
hashing, and the format of the headers have been adopted from UNIX for use within the ISS [7]. A buffer
can be freed from the hash table in one of two ways. If a buffer was allocated to a list (read/send) and that list
was flushed, the buffer is returned to the head of the LRU list so that it is the next buffer to be reused. A
buffer may also naturally progress through the LRU list until it has reached the end of the list, at which time
it is recycled.

The Disk Server handles three request priority levels:
• high: send first, with an implicit priority given by order within the list.

• medium: send if there is time.

• low: fetch into the cache if there is time, but don't send.

The priority of a particular request is set by the requesting application. The application’s prediction algo-
rithm should use these priority levels to keep the ISS fully utilized at all times without requesting more data
than the application can process. For example, the application should send low priority requests to pull data
into the ISS cache that the application will need in the near future; this data is not sent to the application until
the application is ready. Another example is an application that plays back a movie with a sound track,
where audio might be high priority requests, and video medium priority requests.

5.4  ISS Reader

The ISS Reader process reads data off of disk and puts it into the buffer cache that is managed by the Disk
Server process. There is one Reader per physical disk. This process continually checks for requests in the “to
read” list, starts a read operation on that disk if a request is pending, then waits for the data to be read. Once
the data is read off of disk the request is moved into the list of data that is to be written out. There are two
distinct lists of data that are to be written out, one for each of the high and medium priority levels described
above.



5.5   ISS Sender

The ISS Sender process sends all data in the “to send” list out to the application that requested it. There is
one sender per network interface. This process continually checks the list of data that is ready to be written
out, looking for data that is of high or medium priority (as described above). Note that data of medium prior-
ity will only be sent if there is no data of high priority in the cache. However, it is possible for medium prior-
ity data to be written out before higher priority data, as in the case where the medium priority data is in the
memory cache, and higher priority data is resident on disk.

6.0  Current ISS Status

All ISS software is currently tested and running on Sun workstations (SPARCstations and SPARCserver
1000’s) running SunOS 4.1.3 and Solaris 2.3, DEC Alpha’s running OSF/1, and SGI’s running IRIX 5.x.
Demonstrations of the ISS with the MAGIC Terrain Visualization application TerraVision have been done
using several WAN configurations in the MAGIC testbed [11]. Using enough disks (4-8, depending on the
disk and system type), the ISS software has no difficulty saturating current ATM interface cards. We have
worked with 100 Mbit and 140Mbit TAXI S-Bus and VME cards from Fore systems, and OC-3 cards from

DEC, and in all cases ISS throughput is only slightly less thanttcp4 speeds.

Table 1 below shows various systemttcp speeds and ISS speeds. The first column is the maximumttcp

speeds using TCP over a ATM LAN with a large TCP window size. In this case,ttcp just copies data from
memory to the network. For the values in the second column, we ran a program that continuously reads from
all ISS disks simultaneously withttcpoperation. This gives us a much more realistic value for what network
speeds the system is capable or while the ISS is running. The last column is the actual throughput values
measured from the ISS. These speeds indicate that the ISS software adds a relatively small overhead in terms
of maximum throughput.

7.0  Operation System Issues

7.1  Threads

Currently, the ISS Disk Server is implemented as a group of loosely-coordinated UNIX processes. We
believe performance can be enhanced by transforming these processes into threads. Most of the gains arise
from bypassing the overhead of the interprocess communication mechanisms needed to guarantee consis-
tency of resources shared by the processes, e.g., the semaphores needed to ensure non-simultaneous access
to the to-read and to-send lists. The same functionality can be achieved using thread-based mechanisms that
are designed to be much faster, e.g., mutual exclusion locks.

The ISS Disk Server requires separate processes to receive from the network, read from disk, and send to the
network. These processes must share certain resources, namely, the to-read lists, the to-send list, and the data
cache. To ensure fair access to each of these resources, we force some processes to sleep for a short time: by

4. ttcp times the transmission and reception of data between two systems using the UDP or TCP protocols.

TABLE 1.

System Max ATM LAN ttcp ttcp w/ disk read Max ISS speed

Sun SS10-51 70 Mbits/sec 60 Mbits/sec 55 Mbits/sec

Sun SS1000 (2 proc) 75 Mbits/sec 65 Mbits/sec 60 Mbits/sec

SGI Challenge L 82 Mbits/sec 72 Mbits/sec 65 Mbits/sec

Dec Alpha 127 Mbits/sec 95 Mbits/sec 88 Mbits/sec



this mechanism, we guarantee that the operating system will perform a context switch. When any Disk
Server process accesses a list or the cache, it first obtains a semaphore to guarantee exclusive access for the
duration of the time it needs to perform its task. If other processes attempt to access the data, they are
rejected and must, after a sleep-induced wait, try again.

Instead of the expensive semaphore mechanism, multiple threads guarantee exclusive access by using
mutual-exclusion locks. The overhead of mutex locks is much less than that of semaphores, and checking
mutex locks is much faster. Threads which cannot obtain a needed resource enter into a state of conditional
waiting: this state eliminates the cycle of checking for the available resources, sleeping, and checking again,
which characterizes processes attempting to gain a shared resource. Threads in conditional wait are simply
put to sleep and signaled when the resource is available. Interthread communication is much faster than
interprocess communication and threads consume fewer resources, since threads share the same text space
with one another.

7.2  Real-Time Scheduling

An application like the Image Server System could benefit from real time scheduling. The ISS currently
must attempt to coerce the UNIX scheduler to context-switch between the various competing ISS processes:
trying to promote such context switching wastes time and reduces efficiency.  A real-time operating system
allows fine-grained control of the scheduler by means of thread prioritization and conditional waiting. Effec-
tively, threads can take more or less processor time as necessary instead of arbitrarily taking a fixed slice of
CPU time, and reducing competition with kernel-level or other user-level threads. This ability to vary the
amount of time used by each thread is especially useful given that the ISS is driven by external events (the
requests for the images) and must deliver the images back to the driving application within a predetermined
time.

8.0  Experience

8.1  ATM Networking Issues

The design of the ISS is based upon the ability to use ATM network switches to aggregate cells from multi-
ple physical data streams into a single high-bandwidth stream to the application. Figure 1 (Data Streams
Aggregated by ATM Switches) shows multiple ISS servers being used to form a single high-speed data
stream to the application.

Below is a list of what we have learned from our experience using ATM networks. Most of the experience
reflected here comes from our work in the MAGIC gigabit testbed.

I) Hardware and Physical Layer:

- delivery of most ATM hardware has been delayed;

- the “infant mortality” rate has been high (several ATM interfaces and the ATM switch died in
the first 60 days);

- it now seems clear that the workstation vendors have adopted multimode OC-3 as their pre-
ferred physical layer (we bought several 140 Mb/s TAXI, which were available six months
ago);

- several of the multimode interfaces will drive single mode equipment (e.g., SONET terminals)
by carrying the multimode fiber to the single mode interface (all examples of this have had ac-
tive elements immediately behind the single mode interface);

II)  Link Layer:

-  not all of the ATM cell definitions (especially with respect to the Quality of Service (QOS)
field) are uniform among manufacturers (QOS = 0 seems to be the point of agreement);



- there are many places where cell loss is apparent: these include switch output ports (next gen-
eration switches have much more buffering), and workstation interfaces, which are easily
overrun for reasons not yet clear (it could be failure of kernel code to empty buffers fast
enough);

- ATM device drivers are still fairly crude and buggy. This is especially true on multiprocessor
systems, where the device drivers don’t yet fully take advantage of the multi-threading capa-
bilities of the operating system;

III)  Network:

- Except for homogeneous switch environments, switched virtual circuits are not yet standard-
ized, and in a large scale environment, use of PVCs makes set up and reconfiguration tedious
and prone to errors;

IV) Transport:

- There are many throughput anomalies that are being investigated;

- Our work with timer-driven RTP shows some promise of it being a little more immune to cell
loss than TCP.

One of the things that is becoming apparent in our work with this architecture is that the conventional notion
of QOS is not a good method for regulating tightly coupled applications like the ISS, and (for similar rea-
sons) may not be good for distributed-parallel compute server systems. Problems frequently occur when sev-
eral servers that normally operate asynchronously to provide data to a single source, suddenly synchronize to
produce a burst of data that overloads the switch and interface on the single receiver, thereby causing every-
body to slow down and retransmit, leading to severe throughput degradation. This is very similar to the prob-
lem of routing message synchronization described by Floyd and Jacobson[2].

8.2  Memory Copy Speed

The main bottleneck for the ISS Disk Server is the speed of moving data into and out of memory.   A
SPARCStation 10, for example, has memory copy speed of about 22 Mbytes/s (176 Mbits/s). When writing
to the network, the situation is even worse because data is moved to the interface via UNIX “mbufs” [7],
adding additional overhead. We have measured the speed of an mbuf copy as 19 Mbytes/s (152 Mbits/s), and
there are two mbuf copies required to send a packet to the network. Along with the other overhead required
to assemble packets, this limits the speed with which we can write to the network to 9.2 Mbytes/s (74
Mbits/s).

If the network sends were faster, e.g., 19.4 Mbytes/s (155 Mbits/s - the OC-3 rate, ignoring ATM overhead),
the next bottleneck would be the disk reading speed, which in this configuration is 9 Mbytes/s (72 Mbits/s).
This bottleneck is trivially removed by adding more disks. This brings us back to the “memcpy” limit of 22
Mbytes/s as the key bottleneck. The other bottlenecks are not likely to be relevant in the near future. Increas-
ing the speed of workstation memory is the key to increased performance for this application.

9.0  Conclusions

The emergence of wide area high-speed networks enables many types of new systems, include distributed
parallel data servers. We have designed and implemented a special purpose high-speed data server, called the
ISS. The ISS is designed to be distributed across multiple hosts with multiple disks on each host, and should
be capable of scaling to gigabit per second rates. Moreover, we believe that the core design is flexible
enough so that only minor modifications need be made to adapt the ISS to different data types and access
patterns.

 In the process of implementing and using this system, we have learned many things about workstation and
operating system bottlenecks, and using ATM networks. The main things we discovered are:



•  memory to memory copy speed is the main I/O bottleneck on today’s workstations;

•  ATM networks still have many problems to be worked out before they are ready for general use.

10.0  References

[1] Chen, L. T. and Rotem, D., “Declustering Objects for Visualization”, Proc. of the 19th VLDB (Very
Large Database) Conference, 1993.

[2] Floyd, S. and Jacobson, V., “The Synchronization of Periodic Routing Messages”, Proceedings of
SIGCOMM ‘93, 1993.

[3] Ghandeharizadeh, S. and Ramos, L, “Continuous Retrieval of Multimedia Data Using Parallelism,
IEEE Transactions on Knowledge and Data Engineering, Vol 5, No 4, August 1993.

[4] Hartman, J. H. and Ousterhout, J. K., “Zebra: A Striped Network File System”, Proceedings of the
USENIX Workshop on File Systems, May 1992.

[5] Leclerc, Y.G. and Lau, S.Q., Jr.,“TerraVision: A Terrain Visualization System”, SRI International,
Technical Note #540, Menlo Park, CA, 1994.

[6] Langberg, M., “Silicon Graphics Lands Cable Deal with Time Warner Inc.”, San Jose Mercury
News, June 8, 1993.

[7] Leffler, S.J., McKusick, M.K., Karels, M. J. and Quarterman, J.S., “The Design and Implementation
of the 4.3BSD UNIX Operating System”, Addison-Wesley, Reading, Mass., 1989.

[8] Mills, D., “Network Time Protocol (Version 3) specification, implementation and analysis”, RFC
1305, University of Delaware, March 1992.

[9] Mills, D., “Simple Network Time Protocol (SNTP)”, RFC 1361, University of Delaware, August
1992.

[10] Patterson, D., Gibson, G., and Katz, R., “A Case for Redundant Arrays of Inexpensive Disks
(RAID),” in Proc. 1988 SIGMOD Conf., June 1988.

[11] Richer, I. and Fuller, B.B., “An Overview of the MAGIC Project,” M93B0000173, The MITRE
Corp., Bedford, MA, 1 Dec. 1993.

[12] Rowe, L. and Smith, B.C., “A Continuous Media Player”, Proc. 3rd International Workshop on Net-
work and Operating System Support for Digital Audio and Video, San Diego, CA, Nov. 1992.

[13]  Schulzrinne, H. and Casner, S., “RTP: A Real-Time Transport Protocol”, Internet Draft,
Audio/Video Transport Working Group of the IETF, 1993.


