
1

Distributed Large Data-Object Environments:
End-to-End Performance Analysis of High Speed Distributed Storage

Systems in Wide Area ATM Networks

 William Johnston, Brian Tierney, Jason Lee, Gary Hoo, and Mary Thompson

Imaging and Distributed Computing Group,
Information and Computing Sciences Division

Lawrence Berkeley National Laboratory1,
University of California, Berkeley, CA, 94720

Abstract

We have developed and deployed a Distributed-Parallel Storage System (DPSS) in several
high speed ATM WAN testbeds to support several different types of data-intensive appli-
cations. Architecturally the DPSS is a network striped disk array, but is fairly unique in
that its implementation allows applications complete freedom to determine optimal data
layout, replication and/or coding redundancy strategy, security policy, and dynamic recon-
figuration.

In conjunction with the DPSS, we have developed a “top-to-bottom, end-to-end” perfor-
mance monitoring and analysis methodology that has allowed us to characterize all
aspects of the DPSS operating in high speed WAN environments. In particular, we have
run a variety of performance monitoring experiments involving the DPSS in the MAGIC
testbed, which is a large-scale, high-speed, ATM network and we describe our experience
using the monitoring methodology to identify and correcting problems that limit the per-
formance of high speed distributed applications.

Finally, the DPSS is part of an overall architecture for using high-speed, wide area net-
works for enabling the routine, location independent use of large data-objects. Since this is
part of the motivation for a distributed storage system, we describe this architecture.

1. The work described in this paper is supported by ARPA, Computer Systems Technology Office
(http://ftp.arpa.mil/ResearchAreas.html) and the U. S. Dept. of Energy, Office of Energy Research, Office of
Computational and Technology Research, Mathematical, Information, and Computational Sciences Division
(http://www.er.doe.gov/production/octr/mics), under contract DE-AC03-76SF00098 with the University of
California. Authors: wejohnston@lbl.gov, tierney@george.lbl.gov, Lawrence Berkeley National Laboratory,
mail stop: B50B-2239, Berkeley, CA, 94720, ph: 510-486-5014, fax: 510-486-6363,
http://www-itg.lbl.gov). This is report no. LBNL-39064.
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1.0  Introduction

We are developing a strategy for using high-speed networks as enablers for storage sys-
tems whose components are distributed around wide area networks. The high-level goal is
to dramatically increase the location independence for access to “large data-objects”.
These objects - typically the result of a single operational cycle of an instrument, and of
sizes from tens of MBytes to tens of Gbytes - are the staple of modern analytical systems.
It is further the case that many of the instrumentation systems that generate such
data-objects are used by a diverse and geographically distributed community: examples
from the scientific community include physics and nuclear science high energy particle
accelerators and detector systems, large electron microscopes, ultra-high brilliance X-ray
sources, etc. There are correspondingly complex instrumentation systems in the health
care community that generate large data-objects. Our approach is an architecture that uses
a collection of highly distributed services to provide flexibility of managing storage
resources, reliability of access, and high performance, all in an open environment where
the use-conditions for resources and stored information are guaranteed through the use of
a strong, but decentralized, security architecture.

In this paper we will discuss some of the aspects of our distributed large data-object archi-
tecture, but we focus on the issues for achieving high performance for distributed systems
in wide-area ATM networks - a problem that is clearly central to the basic premise of our
approach.

As developers of high-speed network-based distributed services, we often observe unex-
pectedly low network throughput and/or high latency. The reason for the poor perfor-
mance is frequently not obvious. The bottlenecks can be (and have been) in any of the
components: the applications, the operating systems, the device drivers, the network
adapters on either the sending or receiving host (or both), the network switches and rout-
ers, and so on. It is difficult to track down performance problems because of the complex
interaction between the many distributed system components, and the fact that problems
in one place may be most apparent somewhere else. Further, these distributed applications
are complex, bursty, and have more than one connection in and/or out of a given host at
one time and simple tools like ttcp do not adequately simulate these conditions.

We have developed a methodology and tools for monitoring, under realistic operating con-
ditions, the behavior of all the elements of the application-to-application communications
path in order to determine exactly what is happening within this complex system. Our
approach is to instrument both the applications and the storage systems to do timestamp-
ing and logging at every critical point in the data handling system. We have also modified
some of the standard Unix network and operating system monitoring tools to log “interest-
ing” events using a common log format that can be correlated with the instantaneous
behavior of the application, the storage system, and the transport between them. This
allows us to characterize the performance of all aspects of the distributed systems and net-
work in detail, using “real-world” operations. This monitoring functionality is designed to
facilitate identifying bottlenecks, performance tuning, and various sorts of network perfor-
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mance research. It also allows us to measure throughput and latency characteristics of our
distributed application code.

The goal of the performance characterization work is to produce predictable, high-speed
components that can be used as building blocks for high-performance applications, rather
than having to “tune” the applications top-to-bottom as is all too common today.

In this paper we describe an architecture for handling large data-objects, the elements,
implementation, and applications of that architecture. We also describe in some detail the
architecture and performance of a prototype application and a distributed - parallel data
server, called the DPSS (Distributed Parallel Storage Server, formerly known as the Image
Server System, or ISS) that is used to drive many of the experiments, and is a key element
of the large data-object architecture. Finally, we describe some techniques for monitoring
and analysis of the elements of the architecture, and some experimental results using these
techniques.

2.0  Distributed Large Data-Object Management Architecture

The advent of shared, widely available, high-speed networks is providing the potential for
new approaches to the collection, storage, and analysis of large data-objects. In one
example, high-volume health care image data used for diagnostic purposes - e.g. X-ray
CT, MRI, and cardio-angiography - are increasingly collected at tertiary (centralized)
facilities, and may now be routinely stored and used at locations other than the point of
collection. In this case, the importance of distributed storage is that a hospital (in fact,
almost any instrumentation scenario) may not provide the best environment in which to
maintain a large-scale digital storage system, and an affordable, easily accessible,
high-bandwidth network can provide location independence for such storage. In the case
of health care, the importance of remote end-user access is that the health care
professionals at the referring facility (frequently remote from the tertiary imaging facility)
will have ready access to not only the image analyst’s reports, but the original image data
itself.

This general strategy extends to other fields as well. In particular, the same basic
infrastructure is required for remote access to large-scale scientific and analytical
instruments, both for data handling and for direct, remote-user operation. See [1].

The basic elements of a distributed large data-object architecture include:

• data collection and the instrument-network interface

• on-line storage that is distributed throughout the network (for both performance and
reliability)

• processing elements - also distributed throughout the network - for various sorts of
data analysis

• data management that provides for the automatic cataloguing (metadata generation)
of the data being stored

• data access interfaces, including application-data interfaces
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• (transparent) tertiary storage (“mass storage”) management

• user access to all relevant aspects (application, data, metadata, data management)

• transparent security that provides access control for all of the systems components
based on the resource-owner’s policy

Within the network storage system in particular - a “middleware” service - the
architectural issues include:

• distributed storage system operation and performance

• user access methodologies

• security architecture

These elements all need to be provided with flexible, location-independent interfaces so
that they can be freely moved around the network as required for operational or other
logistical convenience.

Figure 1 illustrates the overall architecture. It indicates the central role of a high-speed
cache, which is used both for initial data collection, and to provide subsequent high-speed
access by applications.

Briefly, the data flow and information generation proceed as follows. The data-objects are
first cached on the DPSS (whose components are frequently scattered all over the
network). From the cache it is “processed” as required, but typically to produce several
pieces of information to be included in the “index”. Metadata is generated (by analyzing
the object, collecting information forwarded by the object generator, or by associating
separate information with the object). This metadata is typically kept in “tagged-file” text
files. “Derived” information is generated; in the case of image-like objects, this includes
typically “thumbnail” and screen-sized representations, “typical” frames from a
video-object, etc. The data-object itself is replicated in a tertiary storage system. All of the
information related to the data-object is combined into a Web document that represents a
comprehensive index and source of meta-information for the data-object. At this point
the data-object has a comprehensive “index”, a permanent instance in tertiary storage, and
(perhaps) a temporary instance in the network cache. A Web interface can be used for
searching, browsing, and accessing the metadata, or the object itself. (See Section 2.3,
“Data Management, Mass Storage, and the User Interface” and Figure 3, below.) This
same Web interface is used to manage the migration of the data-object in to, and out of,
the cache. The user or application never has to deal directly with the tertiary storage
system - it is managed in a transparent and location independent manner. Applications that
access the data-object can be launched directly from the Web interface, or can use the Web
interface to migrate the object to cache, and access it there. Access methods for the
data-objects are typically provided as loadable libraries for the application, and provides
for application or data specific views of the data-object. (These “objects” are not persistent
C++ objects: the “object” consists of access methods (of which there may be several), the
metadata (including “derived” objects”), and the data-object itself, all of which typically
reside in different locations.) As indicated in Figure 4 (Distributed-Parallel Storage
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System Architecture) the access library translates the application view of the object to
DPSS logical block addresses.

Together, these elements of a large data-object management architecture have provided
effective management for several classes of data-objects. (See [2] and [3].)

2.1  Data Collection

Instrumentation systems are at the front-end of many distributed large data-object
environments. Examples include particle accelerator detectors, Earth environment
monitoring satellites, and medical imaging systems. These sources generate essentially
continuous data streams, but ones that have “natural” boundaries that define “objects”. For
many of the instrumentation systems that we are interested in, one of the primary issues is

Figure 1 Overall Architecture for a Distributed, Large Data-Object Environment
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getting the data out of the instruments and onto the network. One of the circumstances that
has led to both the interest in, and practicality of, the architecture being described here is
that general purpose workstations now have memory and I/O bus structures that are fast
enough to acquire, structure, and send to the network, significant bandwidth data streams.
(For example, the newest (mid-1996) DEC Alpha and Sun UltraSparc workstations can
deliver 20 MBytes/sec of user data to a network interface.) This is an important capability
because it means that the only special hardware that is required to bring instruments
on-line is the interface between the workstation and the data source, and even this
interface may be provided in “software” using off-the-shelf DSP-based I/O boards.

The frontend workstation acquires the raw data, formats it as “objects” by adding or using
metadata from the experiment environment, and then sends the objects into the distributed
environment. The data collection workstation frequently also serves as a buffer so that
brief interpretations or slow-downs in the network do not result in loss of data

2.2  Network Cache

A high performance widely distributed network storage system is an essential component
of a network-based large data-object environment. Distributing the components of a
storage system throughout the network increases its capacity, reliability, performance, and
security. Usable capacity increases in conjunction with a widely deployed, generalized
security infrastructure that can support dynamic construction of systems through
brokering and automated acquisition of resources. (See [4].) Reliability increases because
storage systems that can be configured from components that have as little as possible in
common (e.g., location) provide the resilience that comes from independence (transparent
redundancy of data is also possible). Performance is increased by the combined
characteristics of parallel operation of many sub-components, and the independent data
paths provided by a large network infrastructure. Security is also potentially increased by
having many independent components, each of which has local and independent
enforcement mechanisms that can limit the scope of a security breach.

The Distributed-Parallel Storage System (“DPSS”, also known as the “ISS”) is an
experimental system in which we are developing, implementing, and testing these ideas.
In most configurations, the DPSS is used as a network-striped disk array designed to
supply and consume high-speed data streams to and from other processes in the network.
(See [5] and [6].)

The DPSS is essentially a “logical block” server whose functional components are
distributed across a wide-area network. (See Figure 2) illustrating the DPSS architecture.)
The DPSS uses parallel operation of distributed servers to supply image streams fast
enough to enable various multi-user, “real-time”, virtual reality-like applications in an
Internet / ATM environment. There is no inherent organization to the blocks, and in
particular, they would never be organized sequentially on a server. The data organization is
determined by the application as a function of data type and access patterns, and is
implemented so that a large collection of disks and servers can operate in parallel,
enabling the DPSS to perform as a high-speed data source or data sink.
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At the application level, the DPSS is a semi-persistent cache of named data-objects, and at
the storage level it is a logical block server. Although not strictly part of the DPSS
architecture, the system is usually used with an application agent library called a “data set
structure access method”. This component provides an object-like encapsulation of the
data, in order to represent complex user-level data structures so that the application does
not have to retain this information for each different data set. The function and interface of
the access methods are left to the application domain, but one simple example is for video
data. In this case the access method allows applications to request data by “frame”
number. The access method converts the application requests into logical block requests.
These logical block requests are then sent to the DPSS Master which serves two functions,
request and resource management. The Resource Manager maintains data set definitions,
and the Request Manager is responsible for mapping the logical block requests to physical
block requests. The Resource Manager also deals with interactions with the storage
servers to determine available storage (a storage server is an independent entity and may
deal with several DPSS Masters) and to establish the “security context” that provides the
scope of control for various resources.

A security model and supporting security architecture provides for enforcing “owner”
defined management policy for the physical resources and access policy for the data.
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2.3  Data Management, Mass Storage, and the User Interface

In any scenario where data is generated in large volumes and with high throughput, and
especially in a distributed environment where the people generating the data are
geographically separated from the people cataloguing and using the data, there are several
important issues: automatic generation of at least minimal metadata; cataloguing of the
data and the metadata as the data is received (or as close to real time as possible);
transparent management of multiple tertiary storage systems; and facilitation of
co-operative research by allowing specified users at local and remote sites immediate
access to the data, and incorporation of the data into other databases or documents.

One example of an approach to this capability is “ImgLib” (see [7]) which uses World
Wide Web based tools to provide this library-like functionality. Semi-automatic
cataloguing of incoming data is done by extracting associated metadata and converting it
into text records, by generating auxiliary metadata and derived data, and by combining
these into Web documents. Tertiary storage management is provided by using the remote
program execution capability of Web servers to provide transparent access to different
kinds of mass storage systems that then return the data-objects to the Web server, or, as is
the case in several of our applications (and typically with large data-objects), move the
data to a DPSS cache for access by applications. (For an example of a Java applet
accessing the DPSS, see http://www-itg.lbl.gov/ISS/browser/iss2d.html.) Where the
data-object is stored on tertiary storage, and how to access it, are all part of the Web-based
“object-index”.

Figure 3 Large Data-Object Management for Video-like Objects
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Figure 3 illustrates some of these points. It shows a browser interface on the left, and on
the right the results of automatically building a sub-collection of data-objects as the result
of a search on the textual metadata. The information about the data-objects that result from
the search is shown as a collection of thumbnails, associated pointers to other types of
derived data, and a pointer to the original data-object. For the data-objects that reside on
tertiary storage (a tape-robot based mass storage system in this case), there is an option for
forcing migration of a data-object back to the on-line cache if the data of interest is not
already there. The example in Figure 3 is fairly simple, but in the health care information
system mentioned below, the original video data-object cannot be compressed and
requires a special application to view the original data-objects (directly from the DPSS),
or via JPEG or MPEG “movies” that are derived representations (see [2]).

2.4  A Health Care Information System Application

An example of a medical application that uses this distributed large data-object
architecture is a system that provides for collection, storage, cataloguing, and playback of
video-angiography images using a metropolitan area ATM network.

Cardio-angiography2 is used to monitor and restore coronary blood flow,
and though clinically effective, the required imaging systems and
associated facilities are expensive. To minimize the cost of such procedures,
health care providers are beginning to concentrate these services in a few
high-volume tertiary care centers. Patients are typically referred to these
centers by cardiologists operating at clinics or other hospitals; the centers
then must communicate the results back to the local cardiologists as soon
as possible after the procedure. The advantages of providing specialized
services at distant tertiary centers are significantly reduced if the medical
information obtained during the procedure is not delivered rapidly and
accurately to the referring physician at the patient’s home facility. The
delivery systems currently used to transfer patient information between
facilities include interoffice mail, U.S. Mail, fax machine, telephone, and
courier. Often these systems are inadequate and potentially could introduce
delays in patient care. (See [3].)

Using a shared, metropolitan area ATM network and a high-speed distributed data
handling system, video sequences and still images are collected from the
video-angiography imaging systems, stored, and accessed by a remote user. The image
data are sent through the network to storage and analysis systems, as well as directly to the
users at clinic sites. Thus, data can be stored and catalogued for later use, data can be
delivered live from the imaging device to remote clinics in real-time, or these data flows
can all be done simultaneously. Whether the storage servers are local or distributed around
the network is entirely a function of the optimal logistics. There are arguments in regional

2. Cardio-angiography imaging involves a two plane, X-ray video imaging system that produces from sev-
eral to tens of minutes of digital video sequences for each patient study for each patient session. The digital
video is organized as tens of data-objects, each of which are of the order of 100 MBytes.
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health care information systems for centralized storage facilities away from the hospital
environment, even though the architecture is that of a distributed system. (See [8].)

This application is in operation in the CalREN, ATM network in the San Francisco Bay
Area, and is described in some detail in [2].

3.0  Network Storage: The Distributed-Parallel Storage System

A central issue for the approach of using high-speed networks and distributed systems as
the foundation of a large data-object management strategy is the performance of the sys-
tem components, the transport / OS software, and the underlying network. Problems in
any of these regimes will negatively affect our strategy, but such problems can usually be
fixed if they can be isolated and characterized. A significant part of our work with
high-speed distributed systems is developing a methodology and tools to locate and char-
acterize bottlenecks.

We have designed and implemented the DPSS, as part of an DARPA-funded collaboration

known as the MAGIC gigabit testbed3 (see [9]), and as part of the U.S. Department of
Energy’s high-speed distributed computing program. This technology has been quite suc-
cessful in several environments. The DPSS provides an economical, high-performance,
widely distributed, and highly scalable architecture for caching large amounts of data that
can potentially be used by many different users. Our current implementation provides for
real-time recording of, and access to large, image-like, read-mostly data sets. In the
MAGIC testbed, the DPSS is distributed across several sites separated by more than 1000
Km of high speed network that uses IP over ATM as the network protocol, and is used to
store very high resolution images of several geographic areas. The first client application
of the DPSS was “TerraVision”, a terrain visualization application that uses the DPSS to
let a user explore / navigate a “real” landscape represented in 3D by using ortho-corrected,
one meter per pixel images and digital elevation models (see [10]).TerraVisionrequests
from the DPSS, in real time, the sub-images (“tiles”) needed to provide a view of a land-
scape for an autonomously “moving” user. Typical use requires aggregated data streams as
high as 100 to 200 Mbits/sec. Even in the current prototype system the DPSS is easily able
to supply these data rates from several disk servers distributed across the network.

The combination of the distributed nature of the DPSS, together with the high data rates
required byTerraVisionand various load simulators, makes this a good system with which
to test a high-speed network in a much more realistic manner than ttcp-like tools allow.

3. MAGIC (Multidimensional Applications and Gigabit Internetwork Consortium) is a gigabit network test-
bed that was established in June 1992 by the U. S. Government’s Advanced Research Projects Agency
(ARPA). The testbed is a collaboration between LBNL, Minnesota Supercomputer Center, SRI, Univ. of
Kansas, Lawrence, KS, USGS - EROS Data Center, CNRI, Sprint, U. S. West, Southwest Bell, and Splitrock
Telecom. More information about MAGIC may be found on the WWW at: http://www.magic.net/
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3.1  DPSS Architecture

As mentioned, the DPSS is essentially a “logical block” server whose functional compo-
nents are distributed across a wide-area network. The DPSS uses parallel operation of dis-
tributed servers to supply high-speed data streams. The data organization is determined by
the application as a function of data type and access patterns, and is implemented during
the data load process. The usual goal of the data organization is that data is declustered
(dispersed in such a way that as many system elements as possible can operate simulta-
neously to satisfy a given request) across both disks and servers. This strategy allows a
large collection of disks to seek in parallel, and all servers to send the resulting data to the
application in parallel, enabling the DPSS to perform as a high-speed data server.

The implementation is based on the use of multiple low-cost, medium-speed disk servers
which use the network to aggregate multiple server outputs for high performance applica-
tions. To achieve high performance all types of parallelism are exploited, including those
available at the level of the disks, controllers, processors / memory banks, servers, and the
network (see Figure 2).

The security model for the DPSS involves accommodating several different resource own-
ers. The context established between the Data Set Manager (DSM) (see Figure 4) and the
disk/storage servers reflects agreements between the owners of physical resources (disks)
and an agent that is providing storage to a user community. This context enforces the disk
usage agreements. The separate context established between the DSM and the users
reflects the use-conditions imposed by the data “owner”, and provides for ensuring access
control that enforces those use-conditions. For more information on the security architec-
ture see [4].

The overall data flow involves “third-party” transfers from the storage servers directly to
the data-consuming application (a model used by most high performance storage sys-
tems). Thus, the application requests data, these requests are translated to physical block
addresses (server name, disk number, and disk block), and the servers deliver data directly
to the application.

3.2  Client Use of the DPSS

The client-side (application) use of the DPSS is provided through a library-based API that
handles initialization (for example, an “open” of a data set requires discovering all of the
disk servers with which the application will have to communicate) and the basic block
request / receive interface. It is the responsibility of the client to maintain information
about higher-level organization of the data blocks; to maintain sufficient local buffering so
that “smooth playout” requirements may be met locally; and to run predictor algorithms
that will pre-request blocks so that application response time requirements can be met.
The prediction algorithm enables pipelining of the operation of the disk servers with the
goal of overcoming the inherent latency of the disks. (See [5] and [6]).

None of this has to be explicitly visible to the user-level application, but some agent in the
client environment must deal with these issues because the DPSS always operates on a
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best-effort basis: if it did not deliver a requested block in the expected time or order, it was
because it was not possible to do so. In fact, a typical mode of operation is that pending
block requests are flushed from the disk server read queues when the next set of requests
arrive from the application. Even if the DPSS cannot send all the requested data to the
application, it is possible that the data was at least read from disk into the DPSS memory
cache, where it will remain available for faster retrieval (for a short time). The application
may then routinely re-request some fraction of the data. This deliberate “overloading” of
the disk servers ensures that they will be kept busy looking for relevant blocks on disk and
caching them in server memory. This approach ensures that the data pipeline stays full,
and that disk server resources are never idle.

As mentioned, a DPSS client typically communicates with the DPSS through an
application library called a “data structure access method library” (see Figure 4).)

3.3  DPSS Implementation

In our prototype implementations, a typical DPSS consists of several (four - five) Unix
workstations (e.g. Sun SPARCStation, DEC Alpha, SGI Indigo, etc.), each with several
(four - six) fast-SCSI disks on multiple (two - three) SCSI host adapters. Each workstation
is also equipped with an ATM network interface. A DPSS configuration such as this can
deliver an aggregated data stream to an application of about 400 Mbits/s (50 Mbytes/s),
using these relatively low-cost, “off the shelf” components, by exploiting the parallelism
provided by approximately five disk servers, twenty disks, ten SCSI host adapters, and five
network interfaces.
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The software implementation is based on Unix interprocess communication mechanisms
and a POSIX threads programming paradigm to manage resources on the disk servers (see
[11] and [5]). The primary operating systems (Sun’s Solaris, DEC’s OSF, SGI’s IRIX, and
FreeBSD) all have slightly different implementations of threads, but they are close enough
that maintaining a single source is not too difficult.

The implementation supports a number of transport strategies, including TCP/IP, RTP/IP
[12] and UDP/IP. RTP and UDP do not guarantee reliable data delivery and never retrans-
mit. Lost data are handled at the application level. This approach is appropriate when data
has an age-determined value: data not received by a certain time is no longer useful, and
therefore should not be retransmitted. This is the case for certain visualization scenarios.
(This paper, however, focuses on TCP performance issues.)

Other papers describing the DPSS, including a paper that describes the implementation is
detail [5], are available at http://www-itg.lbl.gov/DPSS/papers.html.

3.4 TerraVision and tv_sim: Prototype DPSS Client and Monitoring Tool

TerraVision uses the DPSS client library’s logging facilities to log all data movement
events associated with an application session. It uses the a standardized log format to mon-
itor a data block’s progress from the storage server disks, through the network, and into
the application client.

We have also developed a simulator program,tv_sim, that can generate data requests and
receive data blocks from the DPSS in a manner similar toTerraVision’s. Using this pro-
gram we can generate synthetic request patterns, or repeatedly use actualTerraVisionses-
sion data request traces, and attempt to verify and analyze performance bottlenecks in the
DPSS, the application, or in the network in a controlled environment.TerraVision is a
complex software suite running on complex hardware, and patterns of requested data are
complex. tv_sim can emulate theTerraVision data request patterns through the
trace-driven operation facility, but is a “null” application that can be run at much higher
overall request rates than real applications, and can eliminate possible effects of data pro-
cessing or graphics processing on the network throughput.

Thetv_simdata request sending rate, in terms of block lists per second and blocks per list,
can be set by the user, as can the saving of history logs in the DPSS standard format. The
sender can also use trace / playback files of actualTerraVisionsessions instead of generat-
ing its own lists of block requests, as mentioned above. Additionally, the user can specify
the use of multiple data sets, overall running time, and other runtime characteristics.
tv_simand the DPSS thus can be configured to impose almost arbitrary load patterns on a
network and to record the results.

The TerraVisiondata request trace is kept in terms of logical block request so that all
aspects of the configuration of the DPSS may be changed - the number of storage servers,
their location in the network, the data layout, etc. - to facilitate many types of experiments.
In other words, real application data request patterns may be applied against different con-
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figurations of the distributed storage system, network, etc., because the logical block
requests are independent of any aspect of the physical organization of the storage system.

4.0  Performance Monitoring Mechanisms

Network performance and distributed operation characteristics are obviously an important
factor in the architecture that we are describing. There are virtually no behavioral aspects
of an ATM “network” that can be taken for granted, even in an end-to-end ATM network.
By “network” we mean the end-to-end data path from the transport API through the host
network protocol (TCP/IP) software, the host network adaptors and their device drivers,
the many different kinds of ATM switches and physical link bandwidths, and then up
through the corresponding software stack on the receiver. Further, the behavior of different
elements at similar places in the network architecture can be quite different because they
are implemented in different ways. The combination of these aspects can lead to complex
and unpredictable network behavior.

We have built performance and operation monitoring into the storage system and several
applications, and have designed tools and methodologies to characterize the distributed
operation of the system at many levels. As requests and data enter and leave all parts of the
user-level system, synchronized timestamps are logged using a common logging format.
At the same time, various operating system and network parameters may be logged in the
same format. Several of these instrumented applications and tools are described below.

4.1  DPSS Timing Facility

A request for a data block takes the following path through the DPSS (see Figure 5). A
request (a list of blocks) goes from the application to the Request Manager, where the log-
ical block names are translated to physical addresses (server: disk: disk offset), then the
individual requests are forwarded to the appropriate disk servers. At the disk servers, the
data is read from disk into local cache, and then sent to the application (which has connec-
tions to all the relevant servers). Precise timestamps are gathered before and after each
major function, such as name translation, disk read, and network send. All timestamps are
then logged by the DPSS servers. The timestamps are also sent with the data block to the
requesting application, where logging can be performed using the DPSS client library.

Timestamp consistency is provided by the GPS clock-based network time protocol (NTP
− described below), which allows us to make precise throughput and latency measure-
ments throughout the DPSS system and underlying network. Instead of trying to analyze
the aggregate delay between sending a request and receiving the associated data block, we
can pinpoint delays to within narrowly-specified steps in the data path.
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4.2  OS and Network Layer Monitoring

To complement the monitoring at the application level and in the DPSS, we also monitor
various operating system and network conditions. We currently collect and log the follow-
ing types of information:

• TCP retransmits
• CPU usage (user and system)
• CPU interrupts
• AAL 5 information
• ATM switch buffer overflows
• ATM hosts adapter buffer overflow

We have modified “netstat” and “vmstat”4 to do logging.netstatprovides the contents of
various network-related data structures, whilevmstatreports statistics on, among other
things, virtual memory, disk, and CPU activity. Both programs were modified to present

Figure 5 DPSS Performance Characterization Points and Optimal Average
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only a relevant subset of their information in the common logging format, andnetstatwas
modified to poll and report continuously (it normally provides only a snapshot of current
activity). We typically poll at 100 ms intervals, and since the kernel events are not times-
tamped, the data obtained this way represents all events in this interval.

4.3  Common logging format

To easily process the several gigabytes of log files which can be generated from this type
of logging, all events are logged using a common format:

keyword; hostname; seconds; nano-sec; data; data; data;......;

The logging format is a semi-colon separated list of fields. The “keyword” is a unique
identifier describing what is being logged. By convention, the first part of the keyword is a
reference to the program that is doing the logging (e.g.:DPSS_SERV_IN,

VMSTAT_SYS_CALLS, NETSTAT_RETRANSSEGS, TV_REQ_TILE). Each log record contains
both the hostname of the system on which the event occurred and a timestamp. The times-
tamp is modeled after the format returned from the Unix “gettimeofday” call, and is
logged with a numerical precision of one nanosecond. (We expect to be able to get the
NTP synchronized accuracy of the timestamps down to better than one microsecond
through a combination of the recently increased available precision of GPS signals and the
use of real-time clock boards in the systems under study.)

The end of every log record can contain any number of “data” elements. These can be
used to store any information about the logged event that may later prove useful. For
example, for theNETSTAT_RETRANSSEGSevent, there is one data element, and it contains
the number of TCP retransmits since the previous poll time, and theDPSS_START_WRITE

event data elements contain the logical block name, the data set ID, a “user session” ID,
and an internal DPSS block counter. The log records for a given data block are associated
by virtue of being collected and carried in the data block request message as it works its
way through the system.

4.4  Log File Analysis Tools

Tools to analyze log files includeperl scripts5 to extract information from log files and

write data files in a format suitable for usinggnuplot6 to graph the results. These tools
were used to generate the graphs in Section 5.0.

When trying to identify the source of specific problems (such as those that showed up in
the early WAN experiments described below) a good deal of exploratory, interactive anal-
ysis of the log data was the key to identifying the important factors, and graphical analysis

4. Bothnetstat(displays network statistics) andvmstat(displays virtual memory statistics) are tools avail-
able on many Unix systems.

5.  For more information see: http://www.metronet.com/perlinfo/perl5.html

6.  For more information see: http://www.cs.dartmouth.edu/gnuplot_info.html
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of individual, exceptional events has proven to be the most important aspect of analysis
when one is trying to identify the causes of specific behavior. There are several character-
istics that have made graphical analysis a powerful technique. What turned out to be the
most important was the ability to treat “lifelines” (the temporal trace of a single block
from application request all the way through the system to receipt of the data) as identifi-
able entities that could be individually manipulated and quantitatively analyzed.

In order to enable the quantitative analysis of individual events the graphical tools need to
have several characteristics. Probably most important is that the significant features (e.g.,
all of the time points in a lifeline) must be grouped into graphical objects that can be
manipulated as units. Further, it turned out that being able to “sketch”, annotate, and create
special measurement tools were all important capabilities, and so a versatile graphics
drawing tool is very important. (This is illustrated in Figure 7 and Figure 10.)

Thegnuplotgraphics device driver for FrameMaker MIF7 files groups graphics primitives
at two levels: the graphics primitives that result from plotting data from one file are one
“object”, and at the next level down, each associated set of line segments are sub-objects.
Therefore, each of the log file elements, such as block histories, flushed block histories,
TCP retransmits, etc., are organized as objects, and the individual block life-lines are kept
as sub-objects within these larger objects. The FrameMaker graphics tool can manipulate
these objects and sub-objects independently, as well as providing the annotation, measure-
ment, etc., mentioned above, and this proved invaluable in isolating, measuring, and mark-
ing significant events.

4.5  Use of NTP

To be able to perform meaningful analysis of a network-based system, precise timestamps,
based on the synchronized clocks of all systems is essential. All MAGIC testbed hosts run

the ‘xntpd’ program [13], which synchronizes the clocks of each host both to time servers8

and to each other. (End-to-end transit times, including speed-of-light and switch delays,
are of the order of 10 ms.) The MAGIC backbone segments are used to distribute NTP
data, allowing us to synchronize the clocks of all hosts to within about 250 microseconds
of each other. The location of the NTP servers in the MAGIC network are shown in Figure
9 (below).

This synchronization between host clocks allows us to characterize the operation of the
system in useful and surprising ways. (See Figure 7, below.) For example, the DPSS name

7. FrameMaker (http://www.adobe.com/prodindex/framemaker/main.html) is a multi-platform desk-top
publishing program. MIF is its interchange file format that represents both text and graphics.

8. There is considerable craft and lore in interfacing a precision time source to an NTP server platform, and
we readily acknowledge Craig Leres of the LBNL Network Research Group (http://ee.lbl.gov) for working
with Dave Mills and his students at Univ. of Delaware to “fine tune” every aspect of the particular GPS clock
and server platform OS that we use in our experiments and in the MAGIC testbed. Also see [14] for a
description of the characteristics of NTP in the MAGIC environment using this GPS receiver and server
combination.
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server, DPSS disk server, and application are typically on different physical hosts scattered
over the network. For the events that characterize the operation of the system, 1 millisec-
ond resolution is enough to establish the relationship between the impact of an event at
one point in the network, and the origin of the event somewhere else in the network.
Therefore 250 microseconds clock synchronization of all systems is required.

5.0  Example Analysis

This section presents some of the types of analysis that we have been able to do using the
methodology and tools described in the previous section. The specific examples represent
a snapshot of the state of our performance measurements during early 1996. As will be
illustrated, there are several aspects of the overall system that dramatically affect perfor-
mance. Two of these aspects that are changing rapidly are workstation ATM interfaces and
ATM switch buffer management, and the numbers quoted here are primarily intended to
be illustrative rather than an analysis of specific products. For example, over the past two
years the throughput of a Fore Systems SBA-200 interface card operating in a Sun SS-20
has gone from 55Mbits/second to 105 Mbits/seconds, due to upgrades in both OS and
device driver software, and in the same time frame the Fore ASX-200 ATM switch buffers
have increased in size by 50 times. It is therefore certain that specific numbers like these
will have changed by the time this paper is published.

The following sections describe performance results and analysis based on our monitoring
and logging methodology as applied to the DPSS,TerraVision, and tv_sim programs
(described above) operating together in ATM LANs and the MAGIC WAN.

5.1  End-to-End Performance Experiments

Experiments have been performed to examine the detailed interaction between a DPSS,
whose disk servers are distributed over both ATM LANs and a wide-area ATM network,
and theTerraVision application. Our initial monitoring experiments have focused on
issues important to high-performance, highly distributed applications such as theTerraVi-
sion / DPSS combination. Using the log files described above, we are able to generate
graphs (shown in the figures in this section) that have proven to be extremely useful in giv-
ing a detailed view of the throughput and latencies at each point in the distributed system:
that is, in the application, the DPSS, and in the network.

5.2  LAN Experiments

Figure 6 represents a set of traces, collected by monitoring during application-driven oper-
ation, that illustrates the general operational characteristics of the DPSS, and specifically
shows the strategy used by theTerraVisionapplication in order to keep the overall “pipe-
line” of the storage system full.

Generally, each line style in the graphs indicates data from a different DPSS disk server,
and different line styles are also used for “flushed” data requests (described below). The
graphs plot “real time” on the horizontal axis, and the monitoring points on the vertical
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axis. The timestamps are collected at the monitor points, which represent critical points in
the data request-response process from application to distributed storage system and back.
(See Figure 5.) Each line− a “life-line” − represents the history of a data block as it moves
through the end-to-end path.

Referring to Figure 6,TerraVisionsends a list of data block requests every 200 ms, as
shown by the nearly vertical lines starting at theapp_sendmonitor points. The initial
single life-lines fan out at theserver_inmonitor point as the request lists are resolved into
requests for individual data blocks. Each block request is first represented individually in
the read queue (start_read).

Notice that many life-lines terminate atend_read, and that a few also end atstart_read.
Any individual data request that is not satisfied by the disk server before the next request
list arrives is flushed (discarded) from all the server queues, but the data is retained in the
server memory cache. For example, in Figure 6 the life-lines that started at 10,400 ms that
were terminated at did so because the TCP write delay (of unknown cause) at
“trapped” a previous set of blocks in the TCP write buffer. Block requests that were in the
DPSS write queue when the next request list arrived (at 10,600 ms) are flushed from the
queue. However, some of these blocks were re-requested in the 10,600 ms list, and these
re-requests are satisfied very quickly because the data is in the disk server memory cache.

Figure 6 One Server LAN Test
(ATM LAN, one SS-20 as server,tv_sim on DEC 3000/600)
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This is seen in the nearly vertical life-lines at . (The “flush on next request” behavior is
necessary to avoid deadlocks in the server, and provides a pre-fetch mechanism for the
applications.)

Referring to Figure 7, using these life-line graphs it is also possible to get fairly detailed

information on individual operations within the disk servers. For example, when two
life-lines cross in the area betweenstart_readandend_read, this indicates that a read from
one disk was faster that a read from another disk. (This phenomenon is clearly illustrated
for the server represented by the crossing solid lines in Figure 7 at .) This faster read
might be from disks with faster seek and read times (which is not the case in the
experiment represented in Figure 7, as all participating systems used identical disks) or it
might be due to two requested blocks being adjacent on disk so that no seek is required for
the second block.
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Further, in Figure 7 we can also see:
• at “B” two different characteristic disk reads (one with an 8 ms read time and one

with a 22 ms read time);
• at “C” the average time to cache a block and enter it into the network write queue is

about 8.6 ms;
• at “D” the time to parse the incoming request list and see if the block is in the mem-

ory cache is about 5 ms;
• at “E” the overall server data read rate (four disks operating in parallel) is about 8

MB/sec;
• at “F” the actual throughput for this server while dealing with a set of real data

requests is about 39 Mb/s (this throughput is receiver limited);
• at “G”, there are two cache hits (blocks found in memory) as a result from previ-

ously requested, but not sent, data being requested. (Flushed requests are not shown
in this figure.)

Figure 8 illustrates “correct” operation of multiple servers. This LAN-based two-server

experiment shows the interaction of life-lines for blocks from different servers, and a case
where the independent servers are behaving almost “perfectly”: There are very regular
block delivery patterns that alternate almost one-for-one between servers.

5.3  Wide Area Network Experiments

Of particular interest is the experiment for the three-server configuration operating in the
MAGIC WAN testbed (Figure 9). The graphs for the LAN experiments (Section 5.2) show
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mostly expected behavior: smooth operation, no unexpected latencies, no TCP
retransmissions, and so on. However, in the WAN case illustrated in Figure 10, one sees
many TCP retransmissions and some extraordinarily long delays (up to 5500 ms).

5.3.1   WAN Experiment Environment

End-to-end performance experiments in the wide area use data block request traces from
the TerraVisionapplication and then usetv_sim to replay the traces. The traces for the
application running in the MAGIC WAN environment were obtained withTerraVision
running on an SGI Onyx with eight 150 MHz MIPS R4400 processors, 256 MB of main
memory (4-way interleaved), two RealityEngineII graphics processors, and a single Fore
Systems 100 Mb/s TAXI ATM interface. (This configuration is the minimum required to
get good interactive visualization of 3D landscape.)

Experiments were run on the MAGIC ATM testbed, using the configuration illustrated in
Figure 9. A five-minuteTerraVisionsession trace of data block requests was captured, and
then using this list of block requests,tv_simwas used to repeatedly request and receive
those blocks. Experiments were run using a DPSS with one, two, and three disk server
configurations. (The number of disk servers is independent of the application data request
strategy and transparent to the application, except for establishing the data transfer con-
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nections). Log files were collected in the various distributed components for satisfied and
unsatisfied block requests, TCP retransmission information, CPU usage, and ATM cell
loss in the host adapters and ATM switches (though in this case the switches did not accu-
rately report cell loss).

5.3.2  Analysis of a WAN Problem

In the early operating environment of MAGIC, it was very difficult to get anywhere near
the expected throughput with multiple DPSS servers driving a single application. This
resulted in a series of cell-pacing experiments done by our collaborators at U. Kansas,
Lawrence (see [15] and [16]) that eventually determined that if every source (e.g. DPSS
disk server) was paced at 1/N of the final link bandwidth that the total throughput
increased significantly. While this solved an immediate problem, it was not a general
solution, so we went back and conducted a series of experiments attempting to pinpoint
the specific cause of the problem. These experiments and their results are described in
[17]; however, here we illustrate some of the analysis.

Referring to Figure 10, first, let us analyze what the performance monitoring shows
directly. If we look at the long-delayed block life-lines (emphasized in the figure) we see
the characteristic behavior of a data block getting into the write queue (start_write
monitor point) and then incurring some very long delays getting to the application. These
long delays are almost always accompanied by one or more TCP retransmit events. The
reason that the server is blocked as a whole (actually just one application is blocked since
each application has its own TCP connection to the disk server) is that once a block is
written to the TCP socket, the user level flushes have no effect, and TCP will re-send the
block until transmission is successful, even though the data is likely no longer needed and
is holding up newer data. The server unblocks when the a retransmission is successful,
letting the next write proceed. The impact of this is substantial. Following received data
lifelines back in time, the time that the data transfers stalled can be identified. These points
are labeled (at the top of the graph) with the subscript “b” for blocked. (The three servers
are labeled A, B, and C.) The transmission path (TCP circuit) has recovered when the next
transmission proceeds at a “reasonable” rate, and the received data event just prior to the
first of a group of “normal” receives is labeled with a subscript “u” for unblocked. At the
bottom of the graph, the effective transmission from the servers for this application data
path is indicated by the horizontal bars. The impact of this blocking and unblocking is that
the effective throughput of all three servers combined (on a 100 Mbit/s data path that has
no other traffic) is of the order of 1 Mbit/s. Unfortunately, at the time of this experiment
we were not able to get accurate reporting from the switch “A” in Figure 9. However, what
we surmise happened is the following.

The ATM switch A is where the three server streams come together, and this switch has a
per port output buffer of only about 13K bytes. The network MTU (minimum
transmission unit) is 9180 Bytes (as is typical for ATM networks). So, the situation is that
three sets of 9 KBy IP packets are converging on a link with less than 50% that amount of
buffering available, resulting in most of the packets (roughly 65%) being destroyed by cell
loss at the switch output port. The TCP congestion window cannot get smaller than the
MTU, and therefore TCP’s throttle-back strategy is pretty well defeated: on average, every



24

master in

server in

start read

end read

start write

app receive

0 1000 2000 3000 4000 5000 6000

server A:      “tvlog.edc”
server B: “tvlog.uswest”
server C:      “tvlog.tioc”

“edc.net.tcp.retrans.log”

“tioc.net.tcp.retrans.log”
“uswest.net.tcp.retrans.log”

M
on

ito
rin

g 
po

in
ts

TCP retrans

0

Time (ms)

1,000 2,000 3,000 4,000 5,000

Cb
Ab

Bb Bu Bb Cu Bb
CuCbBu

Cb Cu Bu Cb
Cu

Bb Cb
Bu Au

Effective
operation of
servers due
to blockage
from TCP
retransmits

(white space
is blocked).
Ab, Au, etc.,

above,
indicate the

related
events

A:

B:

C:

synchronized blocking of
geographically dispersed servers

A:
B:
C:

TCP
retrans-
missions

Figure 10 Three Server Test (MAGIC ATM WAN, three SS-10s as servers, tv_sim on SGI Onyx)



25

retransmit fails, even at TCP’s “lowest throughput” setting, because this smallest unit of
data is still too large for the network buffers.

Although we could not “prove” these assertions because we could not get accurate switch
cell loss information, this analysis of Figure 10 provided enough information that the
network operators upgraded the switch at A. The new switch as 600 KBy of buffering,
which allows TCP’s congestion algorithms to work correctly, and throughput is now up to
an “average” of 30 Mbit/s per data path, as should be the case. For a more detailed analysis
of this experiment, see [17].

6.0  Conclusions

In order to achieve high end-to-end performance in widely distributed applications, a great
deal of analysis and tuning is needed. In the MAGIC testbed we are evolving a methodol-
ogy that includes network-wide precision time sources and extensive instrumentation for
time, latency, and throughput at all levels of the network, operating system, and applica-
tions. We monitor a large collection of parameters simultaneously (from the ATM level all
the way up through disk performance on the storage servers and the application’s use of
the delivered data) in order to identify and correct performance bottlenecks. This
top-to-bottom, end-to-end approach is proving to be a very useful mechanism for analyz-
ing the performance of distributed applications in high-speed wide-area networks, and the
type of graphs presented here are very useful and informative.

Apart from the immediate need for performance in MAGIC, the larger question that we
hope to address by this methodology is whether high-performance use of networks, com-
puting platforms, middleware, and applications has to be treated as a “system” problem
(that is, all components considered and optimized together) or whether, as we find and cor-
rect problems, we will end up with an environment in which widely distributed, high-per-
formance applications can be build by composing “stock” components, both hardware and
software.

Some advice for those building distributed applications: timestamp all critical operations
using a uniform log format, and run NTP on all hosts, so that the sort of analysis described
here is possible.

7.0  Future Work

We are refining the tools and the measurement techniques that capture and log events, and
several of the other MAGIC consortium members are doing the same. (For example, a
number of the “events” currently collected are the results of watching system variables for
some interval, and then using the interval mid-point as the time stamp, when we should be
getting the actual event timestamp.) We are exploring the use of the University of Kansas
“Data Stream Driver” [18] to improve our timing accuracy for operating system events.

We hope to be able to use the log files from the DPSS client library as “playback” files for
‘netspec’[19], which is a distributed network performance measurement tool that is being
designed and developed at the Telecommunications and Informations Sciences
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Laboratory, University of Kansas.netspecsupports multiple connections per session, and
it will support multiple protocols. This will allow us to easily recreate many different
traffic scenarios. This work was presented at the 1996 DARPA Workshop on Wide Area
ATM Performance (see http://www.tisl.ukans.edu/Workshops/ATM_Performance/), and
one result of this workshop is there will be more work put into working with the
University of Kansas to incorporate this logging and graphing methodology intonetspec
to create a general purpose set of tools.

This work is ongoing, and progress reports will be published at
http://www-itg.lbl.gov/DPSS.
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