
1
Computing Sciences

Future Technologies Group

Data Intensive Distributed Computing:
A Medical Application Example

Ernest Orlando Lawrence Berkeley National Laboratory

Brian L. Tierney (bltierney@lbl.gov)
Jason R. Lee

William E. Johnston

2
Computing Sciences

Outline

• Introduction: Distributed Storage
• Data Architecture
• High Speed Data Cache

—Distributed Parallel Storage System (DPSS)
• Medical Application
• Physics Application
• How to achieving high TCP throughput

3
Computing Sciences

Why Distributed Storage

• Why is distributed storage important for Data
Intensive Computing?

—Researchers often are not at the same location
as the data source

—Compute cycles are often not at the same
location as the data source or the data archive

4
Computing Sciences

Advantages of Distributed
Storage

• sharing of resources

• fault tolerance / load balancing through replicated
data at multiple sites, where a fault might be:
—host failure
—disk failure
—network failure
—software fault
—network congestion
—excessive CPU load

• added flexibility: provides the ability to move the
data to the compute cycles, or move the compute
cycles to the data, depending on network speed

5
Computing Sciences

Remote Access to a Large Data
Archive

Visualization

Processing

Partial
Replica of
Archive

Visualization

Archival Storage

Processing

WAN

User Site

Computer
Center Site

D
at

a
S

ou
rc

e

6
Computing Sciences

Remote Access to a Large Data
Archive using a Cache

Visualization
Processing

Visualization

Archival Storage

Processing

WAN

User Site

Computer
Center Site

D
at

a
S

ou
rc

e

Data

Data

Data

Data
HIgh Speed

Cache

Data

Data

Data

Data

High Speed
Cache

7
Computing Sciences

Data Architecture

8
Computing Sciences

Key Features of the Architecture

• Very high-speed cache that is distributed,
scaleable, and dynamically configurable

• Common, low-level, high data rate interface that
supports various application I/O semantics

• High-speed tertiary storage interface
• Data cataloguing and access system

9
Computing Sciences

Data Handling Model

• data sources deposit data in cache, and consumers
take data from the cache, usually writing processed
data back to the cache

• metadata is typically recorded in a cataloguing
system as data enters the cache, or after
intermediate processing

• a tertiary storage system manager migrates data to
and from the cache. The cache can thus serve as a
moving window on the object/dataset.

• the native cache access interface is at the logical
block level, but client-side libraries implement
various access I/O semantics - e.g., Unix I/O

10
Computing Sciences

Advantages of this Architecture

• First level processing can be done using resources
at the collaborators sites
—this type of experiment typically involves several

major institutions
• Large tertiary storage systems exhibit substantial

economies of scale
—using a large tertiary storage system (e.g.: at a

supercomputer center) should result in:
– more economical storage
– better access (due to more tape robots)
– better media management

11
Computing Sciences

DPSS Cache Architecture

Client Application

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

DPSS Master

data blocks

data blocks

data blocks
Logical Block

Requests

� logical to physical
block lookup

� access control
� load balancing

Physical Block
Requests

12
Computing Sciences

DPSS Architecture

Client
Application

Shared Memory Cache

Block
Request

Tread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

DPSS Master

Block
Writer
Tread

from other DPSS servers

to other
 clients

5 ms

4
 m

s

6 ms

6
 m

s

Total Latency
for a single

block = 25 ms
(master +
server +
network)

::

::

::

::

::
::

: : = monitoring point

::

::

::

::

DPSS Data Server

to
 o

th
er

se
rv

er
s

13
Computing Sciences

Typical DPSS implementation

• 4 UNIX workstations (e.g. Sun Ultra I0s, Pentium 450)
—4 - 6 Ultra-SCSI disks on 2 SCSI host adapters
—a high-speed network (e.g.: ATM or 100 Mbit Ethernet)

• This configuration can deliver an aggregated data stream
to an application at about 500 Mbits/s (62 MBytes/sec)
using these relatively low-cost, “off the shelf”
components by exploiting the parallelism of:
—4 hosts
—16 disks
—8 SCSI host adapters
—4 network interfaces

14
Computing Sciences

Medical Imaging Application

• Cardio-angiography data was collected directly
from a Philips scanner in the San Francisco Kaiser
hospital Cardiac Catheterization Laboratory

• When the data collection for a patient is complete
(about once every 20–40 minutes),

—500–1000 megabytes of digital video data was
sent across the ATM network to the system at
LBNL

—Data now available to physicians at other
hospitals

• This automated process goes on 8–10 hours a day

15
Computing Sciences

Medical Imaging Application

16
Computing Sciences

Medical Data Handling System

• LBNL/Kaiser Permanente collaboration focused on
connecting remote, on-line instrument systems to
“real-time” digital libraries, and provided:

—automatic generation of metadata

—automatic cataloguing of the data and the metadata as the
data is received (or as close to real time as possible)

— transparent management of tertiary storage systems where
the original data is archived

— facilitation of cooperative research by providing specified
users at local and remote sites immediate as well as long-
term access to the data

—mechanisms to incorporate the data into other databases
or documents

17
Computing Sciences

High Energy and Nuclear
Physics Data Example

• Data source: The STAR detector at RHIC
(Brookhaven National Lab).

• This detector puts out a steady state data stream of
20-40 MBytes/second.
—This application requires a data handling

architecture capable of supporting the
processing and storage of over 2 TB / day

18
Computing Sciences

HENP Application Experiment

• A set of experiments were conducted over the
National Transparent Optical Network (NTON)
testbed — eight 2.4 gigabit/sec data channels
around the San Francisco Bay.

• The application network was IP over OC-12 (622
Mbit/sec) ATM.

• An application (STAF: Physics Analysis package)
running on a Sun Enterprise-4000 SMP at SLAC
(Palo Alto) read data from four distributed disk
servers at LBNL (Berkeley), parsed the XDR records
and placed the data into the application memory.

19
Computing Sciences

HENP Application Experiment

• Achieved 57 MBytes/sec (450 Mbits/sec) of user data
delivered to the application

20
Computing Sciences

HENP Application Results

• Each DPSS server transfer rate is 14.25 MBytes/sec
• OC-12 receiver was able read data from 4 servers in

parallel at 57 Mbytes/sec
—this is the rate of data delivered from datasets in

a distributed cache to the remote application
memory, ready for analysis algorithms to
commence operation.

• This is equivalent to 4.5 TeraBytes/day!
• Latency for a single 64 KByte data block is 25 ms,

so pipelining is very important

21
Computing Sciences

How to Achieve High Throughput
over a WAN

• Over the past several years we have learned that the
following is needed to obtain good TCP throughput over
WAN’s:

—Use multiple TCP sockets for the data stream

– possibly as many as 1 per disk

—Use a separate thread for each socket

—Use large block sizes (at least 64 KB)

—Read and write at least 100 blocks at a time, if possible

—Use the optimal TCP send and receive buffer sizes

– too large or too small adversely affects performance

—Avoid unnecessary data copies

– manipulate pointers to data blocks instead

22
Computing Sciences

 For more information

• http://www-didc.lbl.gov/DPSS/
• http://www-didc.lbl.gov/Clipper/
• http://www-didc.lbl.gov/Imglib/

