
Relational Model for
Information and Monitoring
6/3/2001

Steve Fisher / RAL
<s.m.fisher@rl.ac.uk>

6 March 2001Relational Model for I&M - Steve Fisher/RAL 2

Warning
� These ideas are not fully worked out
� Prototypes have not yet been built

but
� It looks very promising
� It relates closely to work of Plale and Dinda (GIS)

and
� There are quite a number of places where solutions

exist which I don�t know about. Please advise me.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 3

Messages
1. Information and monitoring should be

treated together.
2. Should use a data model which can support

arbitrary queries: Relational
3. This is largely consistent with the GGF

performance architecture.
4. The system can be partitioned using a

mixture of full RDBM systems and simple
one table systems.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 4

Information vs Monitoring
� From the user�s point of view there there is little or no

difference between �plain� information and monitoring
information.
� Arguments about rapidly and slowly changing data are

unconvincing
� Maybe you take some plain information (measurement or fact

represented as a tuple) add a time stamp to the tuple and the
information can now be stored for later analysis as monitoring
information � so at most the difference is 1 field � the time stamp.

� Time is the common element
� It is also seems desirable to have a common interface to access

data, whether it is fresh monitoring data or data from an archive.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 5

Tuples
The short batch queue on the CSF system at RAL has 34 jobs on it.
add the time stamp → a tuple:
(RAL, CSF, SHORT, 34, 2001-5-02T16:07Z)

A set of such tuples could be stored in a table:
ComputingElementQueue(Site, Facility, Queue,
Count, Time/Date)

Any structured data can be represented in tables in this
manner.

Complex queries can be formulated with SQL.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 6

A good data model
� The GGF performance architecture does not

specify the protocol between the consumer
and producer nor does it imply any data
model.

� First choose a suitable data model,
then select suitable protocols.

� The chosen data model must have the
power to support all the queries we need to
make.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 7

Why not LDAP
� Relational database was offered by Codd, 30 years

ago
� solution to the inflexibility of hierarchical and network data

bases.
� LDAP (hierarchical) is fine if you know the query in

advance as you can build your database to answer
that question very rapidly.

� For other questions, it could be very expensive as the
LDAP query language cannot give results based on
computation on two different objects in the structure.

� Consider for example the question which a scheduler
asks when deciding which elements of the grid to use
to run a job�

6 March 2001Relational Model for I&M - Steve Fisher/RAL 8

Registration of producers
� Following the GGF architecture, producer normally register

themselves so that they can be found by consumers.
� Now if the RAL CSF has a producer of

ComputingElementQueue information it can register itself:
ComputingElementQueue(Site=RAL, Facility=CSF)

� This information could be stored at the level of RAL by an
RDBMS with both a consumer interface and a producer
interface. The producer would register itself as:

ComputingElementQueue(Site=RAL)

� An RDBMS holding information on all
ComputingElementQueues this would register itself as:

ComputingElementQueue.

� Register the name of the table with the names of any attributes
which are fixed and the values of those attributes.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 9

Duplicate registrations
� If there is more than one producer offering

the same data what should happen?
� It could happen that two archives are set up to

archive and offer the same data. Many events will
be identical though not all because of different
clean up strategies and because of losses where
the consumer fails to keep up.

� To make this less likely the distinction
between archives and producers only of fresh
data should also be noted when registering

� Should probably prohibit duplicate
registrations.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 10

Use of existing Protocols
� LDAP, unlike SQL, has a defined wire

protocol.
� We could:

� adopt the solution used by MySQL which allows
remote data bases to be accessed.

� Or could use SQL embedded in XML as http(s)
query

� Or �

6 March 2001Relational Model for I&M - Steve Fisher/RAL 11

Protocols � single table
� For a producer offering rows from a single

table
� Process SQL statement:

� Push - stream rows which match the query
� Pull - return the latest row if it matches the query.

� The SQL statement may of course only request
certain columns of the table (fields within a row).

� SQL can be processed by some simple code

6 March 2001Relational Model for I&M - Steve Fisher/RAL 12

Protocols � more tables
� To bring the benefits of the relational model we want

to be able to send queries which include joins to
select information from two or more tables. The result
of a an SQL SELECT statement is normally that of a
dynamically created table.

� For aggregate functions (for example to compute an
average), the full power of SQL would be needed.
You transmit an SQL query and a dynamically
constructed table comes back.

� Typically handled by an RDBMS.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 13

Some consumers and
producers

C P

RDBMS

C P

RDBMS

SQL

Tuples
P

C
SQL

Tuples

Simple
producer only
able to cope
with limited
SQL

6 March 2001Relational Model for I&M - Steve Fisher/RAL 14

API - producer
� For the producer, for each table it produces it

should register the table name and the
identity and value of any fixed attributes.
Then a producer simply has to announce a
table name and the row(s) of a table.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 15

API - consumer
� For the consumer API you send an SQL query and

get back rows of a table or request that rows of a
table are streamed to you. The client can analyse the
query and based on the tables involved send the
query to the right producer or producers.
� Queries which can be processed by a single producer can

be handled efficiently, but others will result in some
operations being carried out by the client side.

� This suggests that there will be advantages in having
Producer/Consumer/RDBMS units able to hold data
which will often be joined.
� In fact such a unit might be created automatically and then

destroyed when it is no longer frequently used.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 16

Time to live
� How to decide when to get rid of archived

data
� Information may no longer be �up to date�,

but if we are interested in historical data this
is of no consequence.

� Source of data is no judge of its continued
worth and so TTLs are of no value.

� Only the collector of data, who knows why he
is collecting the data can devise a suitable
strategy.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 17

Surrogate keys
� Normally small integers are used as

surrogate keys when designing data base
schemas.

� A small integer is used as the primary key
rather than some more natural string so that it
can be referenced more compactly by other
tables holding this integer.

� The allocation of these small integers would
be difficult and it is suggested that this
practice not be used here.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 18

Schema

� The schema must be universally known.
� This is a problem for application monitoring data

where the schema could be very short lived.
� Elegant solution is to ensure that the registration

of new tables is easy to do.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 19

Registration of schema
and producers
� Each producer requires only a very small amount of

registration information to be stored.
� A solution would be to have an RDBMS holding both

the schema and the available producers.
� Duplicates itself over a number of RDBMS around

the world � all of which are trying to become identical.
� When you register, you use any one and the information

spreads to all of them.
� When you want information you just use any one.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 20

Meta-schema
� Can have a table to describe the tables and one to

describe the columns of the tables. Two other tables are
needed for the registration of producers � see the paper.

� Add columns to indicate when each record was added (at
least for the ProducerTable table).
� The producers will periodically re-announce themselves and their

record will be dropped from the tables when they are old if not
refreshed.

� When a producer registers itself as a producer of a
certain table, if the table is not known it can be added to
the schema. If a Table is not used by any ProducerTable
its definition can be removed.
� Handles schema evolution.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 21

Conflicts
� One problem which this will not solve is the case of

two producers registering a table with the same
name.

� Eventually the names will move around the system
and will clash. In the same way if we wish to prevent
a producer registering itself with the same information
as an already registered producer this will not always
work reliably.

� A solution to this problem would be that each copy of
the schema/registry RDBMS knew about every other
active one and so could synchronize important
changes such as a new table definition.

6 March 2001Relational Model for I&M - Steve Fisher/RAL 22

Conclusion
� It appears beneficial to support a data model

which can support arbitrary queries.
� It seems practical to introduce the relational

model without any major impact upon the
GGF performance architecture.

� The mechanism for partitioning and
managing a distributed RDBMS outlined here
seems practical.

� Will start prototyping soon to verify this!

