
GWD-I (Informational) R. Aydt, University of Illinois at Urbana-Champaign
 D. Gunter, Lawrence Berkeley National Laboratory
 W. Smith, NASA Ames Research Center

B. Tierney, Lawrence Berkeley National Laboratory
V. Taylor, Northwestern University

GGF Performance Working Group
 February 2001
 Revised 18-January-2002

aydt@uiuc.edu 1

A Simple Case Study of a Grid Performance System

Status of this Memo

This memo provides information to the Grid community regarding a simple performance
monitoring scenario and an abstract implementation of a Grid performance system based on the
Grid Monitoring Architecture (GMA) being developed by the Global Grid Forum Performance
Working Group. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2002). All Rights Reserved.

1. Abstract

The Global Grid Forum Performance Working Group has been developing a Grid Monitoring
Architecture (GMA) that outlines one possible approach toward monitoring resources and
applications in a Grid environment. This document presents a simple case study of a Grid
monitoring system based on the GMA. It describes how the various system components would
interact for a very basic monitoring scenario, and introduces the terminology and concepts
presented in greater detail in other Working Group documents. It is hoped that this document will
provide a basis for further discussion and prototype implementations of Grid monitoring systems.

GWD-I (Informational) R. Aydt, University of Illinois at Urbana-Champaign
 D. Gunter, Lawrence Berkeley National Laboratory
 W. Smith, NASA Ames Research Center

B. Tierney, Lawrence Berkeley National Laboratory
V. Taylor, Northwestern University

GGF Performance Working Group
 February 2001
 Revised 18-January-2002

aydt@uiuc.edu 2

Table of Contents

1. Abstract ...1
2. Introduction..3
3. Scenario ..3
4. Terminology...3

4.1 Event, Event Type, and Event Data ..4
4.2 Event Schema ...4
4.3 Producer and Producer Interface ..4
4.4 Consumer and Consumer Interface ..4
4.5 Directory Service ...5

5. Implementation..6
5.1 Event Schema and Event Type Directory ...6
5.2 Event Producer Directory ..7
5.3 Event Consumer Directory ..8
5.4 Consumer/Producer Communication Established...8
5.5 Producer Sends Event Data to Consumers ..9

6. Summary ...9
7. Open Issues ..9
8. Security Considerations ..10
9. Glossary ..10
10. Author Information...10
11. Acknowledgements ...10
12. Intellectual Property Statement ...10
13. Full Copyright Notice ...11
14. References ..11
15. Appendix: Component Interaction Figures...12

GWD-I 18-January-2002

aydt@uiuc.edu 3

2. Introduction

This document presents a simple case study of a Grid performance system based on the Grid
Monitoring Architecture (GMA)[1] being developed by the Global Grid Forum Performance
Working Group. It describes how the various system components would interact for a very basic
monitoring scenario, and is intended to introduce people to the terminology and concepts
presented in greater detail in other Working Group documents.

We believe that by focusing on the simple case first, working group members can familiarize
themselves with terminology and concepts, and productively join in the ongoing discussions of
the group. In addition, prototype implementations of this basic scenario can be built to explore
the feasibility of the proposed architecture and to expose possible shortcomings. Once the
simple case is understood and agreed upon, complexities can be added incrementally as
warranted by cases not addressed in the most basic implementation described here.

Some open issues and complex requirements that came up during the discussions of the simple
scenario are briefly noted, but no attempt is made to address them in this document. We also do
not address scalability, performance, or fault tolerance in this document. In the simple case
presented here, it is assumed that all components have the necessary authorization to interact in
the manner described. Clearly, authentication and authorization are two very important
considerations in a real implementation of any Grid performance system.

3. Scenario

Ten workstations (ws1 – ws10) are used as desktop systems by local users and are also
available as compute engines for Grid applications. A monitor is running on each of these
workstations to measure the CPU load every 30 seconds. The CPU load measurements are all
forwarded to a central server machine (srvr) on the same local area network as the workstations.
A process on the server makes the load information available to systems not located on the local
network.

A system administrator for the ws workstations monitors the loads from her machine, adminsys,
to ensure that there are no problems. Her machine, adminsys, is on a different network than the
ws workstations.

Further, all of the load measurements are being archived by an archiving service on the machine
archivsys. The archival data is used by another program not discussed in the simple case study
to analyze daily system load patterns and to identify time periods when the workstations are
heavily utilized so that backups will not be scheduled during those times.

Figures depicting the components involved in the scenario and the interactions between them (to
be described in upcoming sections) can be found in the Appendix.

4. Terminology

In this section we define some of the basic terms used by the Global Grid Forum Performance
Working Group and relate them to the simple case study presented in this document.

GWD-I 18-January-2002

aydt@uiuc.edu 4

4.1 Event, Event Type, and Event Data

An event∗ is a structure containing one or more items of data that relate to one or more
resources. Every event has an associated event type that uniquely identifies the structure for that
particular event. The term event data refers to one or more of the items of data making up an
event.

In the scenario described above, the machines adminsys and archivsys will receive events of
type CPU_LOAD describing the load for systems ws1 through ws10. Depending on the
implementation, a single event may or may not contain information for all of the systems. In the
implementation outlined below, an event contains the CPU load information for a single system.

4.2 Event Schema

An event schema describes the structure for a particular event.

In the basic scenario described in this document, a schema will be defined for the CPU_LOAD
event type.

Note that the data model for events has not yet been fully defined. In this document we restrict
ourselves to a minimal data model of a named structure with one or more elements consisting of
a tuple of (name, data type, value).

4.3 Producer and Producer Interface

A producer makes event data available to other components that are part of the Grid Monitoring
Architecture. A given process or component may have multiple producer interfaces, each acting
independently and providing event data. The term producer is used interchangeably, and
inexactly, to refer to both a single producer interface, and to a process or component that
contains at least one producer interface.

A producer (interface) speaks a standard protocol and generates event data in a standard format.
It is likely that there will be several standard protocols and formats defined within the GMA, and a
single producer may support multiple options. A producer may not be the originating source of the
data – that source may or may not speak the same protocol and use the same event data format.
The GMA is not concerned with defining the protocol(s) and format(s) used by the original
sources of the performance data.

In our scenario, a process on srvr is a producer and makes event data available to other
components in the Grid performance system being described. Monitoring processes on ws1
through ws10 are the originating sources of the measurement data, but they are not producers.

4.4 Consumer and Consumer Interface

A consumer in the Grid Monitoring Architecture receives event data from a producer. A given
process or component may have multiple consumer interfaces, each acting independently and
receiving event data. The term consumer is used interchangeably, and inexactly, to refer to both
a single consumer interface, and to a process or component that contains at least one consumer
interface. A consumer (interface) speaks a standard protocol and expects the event data to be in
a standard format.

∗ Events, as defined and used in this document, are implicitly performance events. We make no
attempt to define or discuss other types of events.

GWD-I 18-January-2002

aydt@uiuc.edu 5

In the basic scenario described, processes on adminsys and archivsys are consumers of the
event data produced by srvr. The adminsys consumer process will monitor the per-host
CPU_LOAD measurements. The archivsys consumer process will write the event data to disk for
later examination.

Note that although the archivesys process described in this scenario has a consumer interface,
the same process may also have a producer interface that is active when data is extracted from
the archive.

4.5 Directory Service

A directory service is a searchable component in the Grid Monitoring Architecture used to store
and forward information that is of general interest to other components in the system. The
directory service can be queried through a variety of search mechanisms and returns information
matching the specified selection criteria. The directory service may in practice be implemented
as a set of distributed, interconnected individual directory services under the control of different
organizations.

In the GMA, several distinct types of information will be stored in the directory service and we
refer to the directories for each information type by a unique name. The actual implementation
may place all entries in a single directory service, but conceptually we believe it is easiest to think
of them as independent directories. Here we define only those directories that are necessary to
implement the basic scenario.

4.5.1 Event Type Directory

The Event Type Directory contains event schema for the various events in the system. The
Event Type Directory does not contain actual events. For each event type there will be one
schema in the Event Type Directory -- within the system all events of the same type must have
the same structure.

The Event Type Directory can be searched by event type. It can also be searched by event
element name, for example, “return all the event types that contain an element named
measurement”.

To support the basic scenario described, the CPU_LOAD schema must be included in the Event
Type Directory.

4.5.2 Event Producer Directory

The Event Producer Directory contains information about producers and the event types they
provide.

All producer information in the Event Producer Dictionary is structured according to an Event
Producer Schema. In contrast to the Event Type Directory, which contains the event schema but
not the actual events, the Event Producer Directory does contain the actual producer information
records and not just the schema for those records.

Consumers use the Event Producer Directory to locate producers of events they are interested in
receiving. There are many possible ways a consumer might want to search for producers in the
Event Producer Directory including: by event type, by producer, by host where the measurement
originated, or by any number of other keys. The set of search keys that should be supported is
an open question.

GWD-I 18-January-2002

aydt@uiuc.edu 6

For the basic scenario outlined in this document, the Event Producer Directory will contain one or
more entries indicating that CPU_LOAD event data for ws1 through ws10 is available from a
producer on srvr.

4.5.3 Event Consumer Directory

The Event Consumer Directory contains information about consumers, the event types they
accept, and the services they provide.

All consumer information in the Event Consumer Dictionary is structured according to an Event
Consumer Schema. As with the Event Producer Directory, the Event Consumer Directory does
contain the actual consumer information records and not just the schema for those records.

Producers use the Event Consumer Directory to locate consumers that provide services of
interest, or to find information on supported control and data protocols for known consumers. As
with the Event Producer Directory, the set of search keys that should be supported for the Event
Consumer Directory remains an open question.

To support the basic scenario described in this document, the archival process on archivsys will
register with the Event Consumer Directory as a consumer that accepts all event types and
provides an archival service. This registration will allow the producer process on srvr to locate
the archival service. In another possible implementation, the archive consumer would not
register its service, but instead locate and initiate a connection to the srvr producer.

5. Implementation

In this section we describe, at a fairly high level, the steps necessary to implement the basic
scenario with the Grid Monitoring Architecture. Through this description we hope to give the
reader a clear idea of how the GMA components cooperate, and to provide a framework from
which prototype implementations can be developed to test various protocols and formats.

5.1 Event Schema and Event Type Directory

To implement the basic Grid performance system described, we must first define the event
schema for the CPU_LOAD event. This schema will be stored in the Event Type Directory
where it can be located and used to interpret data values in CPU_LOAD events. We use a
representation-independent format to define the schema here:

 Event Type Event Description

CPU_LOAD CPU load measurement for a single host

Element Name Element Data Type Element Description

measurement double measured CPU load

hostname string host where measurement was taken

timestamp IETF timestamp[2] time measurement was taken

Figure 1: CPU_LOAD Schema

As defined, a CPU_LOAD event has three data elements that contain the CPU load
measurement, the host the measurement relates to, and the time the measurement was made.

GWD-I 18-January-2002

aydt@uiuc.edu 7

5.2 Event Producer Directory

The next step in the implementation process is for the producer, srvr, to add entries to the Event
Producer Directory, advertising that it will provide CPU_LOAD event data for ws1, ws2, … ws10.

We have not yet reached a consensus on the contents of the Event Producer Directory entries,
that is, the Event Producer Schema has not yet been set. We believe further discussion and
experimentation are required to correctly identify an appropriate Event Producer Schema, and the
version presented here should not be interpreted as a standard.

For the purpose of this simple case study we list the type of information that might be included in
the Event Producer Directory entries. Two Event Producer Directory entries are shown, those for
the CPU load data from ws1 and ws2. Similar entries will exist for ws3 through ws10.

Field Name Value

Producer_URL srvr:portXX
Event_Type CPU_LOAD
Host ws1
Service basic

Parameters NONE
Filters NONE
Access OPEN
Control_Protocol SOAP_HTTP, SOAP_TCP, JAVA_RMI

Data_Protocol SOAP_HTTP, SOAP_UDP

Producer_URL srvr:portXX
Event_Type CPU_LOAD
Host ws2
Service basic
Parameters NONE

Filters NONE
Access OPEN
Control_Protocol SOAP_HTTP, SOAP_TCP, JAVA_RMI
Data_Protocol SOAP_HTTP, SOAP_UDP

Figure 2: Event Producer Directory Entries

In the simple case study presented in this document, the consumer on adminsys is interested in
CPU_LOAD data for any of the ws machines. To support this scenario, the Event Producer
Directory will be searched for entries with an Event_Type of “CPU_LOAD” and a Host of “ws1”
through “ws10”. The Producer_URL field specifies where to contact the producer to receive
events of interest.

The remaining Event Producer Directory fields are not explicitly used in this simple case study,
but are included to show possible extensions. Service could be used to indicate the types of
queries that are supported by the producer interface. Parameters could be used to indicate that
the producer would allow the consumer to control some producer variables, such as frequency of
event record transmission. The Filters field could be used to indicate that the producer has some
built-in filtering capabilities, such as sliding window average computations. The Access field is

GWD-I 18-January-2002

aydt@uiuc.edu 8

intended to provide different levels of access to the event data that is being produced – for
example, make data available only to consumers within the same organization or make data
available to anyone.

The Control_Protocol and Data_Protocol fields could be used to specify which of several
standard wire protocols the producer understands, and allows for different control and data
transport protocols. Sample protocols include SOAP_HTTP[3], SOAP_TCP, SOAP_UDP, and
JAVA_RMI[4]. A consumer may be fluent in a limited set of the possible protocols and
consequently would only consider connecting to producers that “speak” those protocols.

5.3 Event Consumer Directory

Another step in the implementation process is for the archiving consumer on archsys to advertise
its existence, allowing the srvr producer to locate it. As mentioned earlier, an alternate
implementation may have an archive process that does not register, but instead initiates the
connection to the producer process.

As with the Event Producer Directory entries, the Event Consumer Schema describing the
contents of the Event Consumer Directory entries has not yet been finalized. For the purpose of
this simple case study we show the type of information that might be included in the Event
Consumer Directory entries. An entry for the archiving consumer on archsys is shown.

Field Name Value
Consumer_URL archsys:portYYY
Event_Type *
Service archive

Parameters NONE
Access Producer=*.mydomain.edu
Control_Protocol SOAP_TCP
Data_Protocol SOAP_UDP

Figure 3: Event Consumer Directory Entry

The Consumer_URL field specifies where to contact the consumer process, the Event_Type field
indicates the types of events the consumer is willing to accept, and the Service field shows the
service or services the consumer provides. The other fields correspond to like-named fields in
the Event Producer Schema. Note that values containing *’s indicate wildcards.

5.4 Consumer/Producer Communication Established

Now that the directory service contains the event type schema, event producer information, and
event consumer information, the Grid performance system is ready to share measurement
information taken on resources in one part of the Grid with processes running on other systems in
the Grid

In particular, for our simple case study the monitoring tool running on adminsys posts a query to
the Event Producer Directory requesting any CPU_LOAD events for machines ws1 through ws10.
The query returns ten matches, all with the same Producer_URL contact values. Using one of
the Control_Protocols retrieved from the Event Producer Directory, the monitoring tool on
adminsys connects to the producer process at srvr:portXX, and subscribes to the CPU_LOAD
events for ws1, ws2, … ws10.

GWD-I 18-January-2002

aydt@uiuc.edu 9

After starting up, the producer process on srvr queries the Event Consumer Directory to find a
consumer that offers archival services for CPU_LOAD events whose protocols are compatible
with those of the producer. Assuming srvr is in “mydomain.edu”, the entry for the archival service
on archivsys is returned. At this point, the producer process on srvr contacts the archival
consumer process on archivsys and initiates a subscription to the producer’s CPU_LOAD events
for ws1 through ws10.

5.5 Producer Sends Event Data to Consumers

Once the subscriptions are in place, the producer sends CPU_LOAD event data to the
consumers until the subscriptions are cancelled.

The event data is sent using one of the protocols advertised in the Event Producer Directory. If
the producer or consumer advertised that they understand multiple data formats, then the
particular format is specified or negotiated in the connection process.

Sample event data encoded in XML[5] is shown here, with white space added for readability:

<CPU_LOAD>
 <measurement> 30.09 </measurement>
 <hostname> ws1 </hostname>
 <timestamp> 2001-01-30T20:33:05.003Z</timestamp>
 <producer> http://srvr.mydomain.edu/producerXX </producer>
</CPU_LOAD>

<CPU_LOAD>
 <measurement> 22.98 </measurement>
 <hostname> ws9 </hostname>
 <timestamp> 2001-01-30T20:34:15.07Z</timestamp>
 <producer> http://srvr.mydomain.edu/producerXX </producer>
</CPU_LOAD>

The monitoring tool receives the event data and updates the display for each host with the
appropriate measurements. The archiving service receives the event data and writes it to the
archive for later analysis by the backup-scheduling program.

6. Summary

We have described a very basic performance monitoring scenario in a Grid environment, defined
terms used within the Global Grid Forum Performance Working Group and related those to the
scenario, and outlined at a fairly high level how the scenario could be implemented with the
components defined in the Grid Monitoring Architecture. This basic scenario ignores may
important and complex issues that are critical to a fully functional Grid performance system in the
interest of presenting basic concepts and providing a starting point for discussion and prototype
implementation experiments.

7. Open Issues

Many aspects of the GMA are not yet fully defined, including the event data model, directory
service entries and search procedures, security mechanisms, and wire protocols.

Readers are encouraged to visit the GGF Performance Area website, which is accessible from
the main GGF website located at http://www.gridforum.org, to view the latest GMA document and
related proposals and prototypes. Interested parties are also welcome to participate in ongoing

GWD-I 18-January-2002

aydt@uiuc.edu 10

discussions regarding the GMA by attending GGF meeting and contributing to the Performance
Area mailing list.

8. Security Considerations

The document acknowledges that authorization and authentication are critical elements of a Grid
monitoring system, but makes no attempt to address how the described system components
would implement these security features.

9. Glossary

GMA Grid Monitoring Architecture, as defined by the Global Grid Forum

Performance Working Group.

10. Author Information

Ruth A. Aydt
University of Illinois at Urbana-
Champaign
aydt@uiuc.edu
ph +1-217-333-8924
fx +1-217-244-6869

Dan Gunter
Lawrence Berkeley National
Laboratory
dkgunter@lbl.gov

Warren Smith
NASA Ames Research Center
wwsmith@arc.nasa.gov

Brian L. Tierney
Lawrence Berkeley National
Laboratory
bltierney@lbl.gov

Valerie Taylor
Northwestern University
taylor@ece.nwu.edu

11. Acknowledgements

Thanks to Darcy Quesnel who participated in the initial SC2000 hallway discussions of the simple
case study that led to this document, and to Rich Wolski who offered valuable comments during
the final revision phase. Thanks also to all members of the Performance Working Group who
contributed to the initial and ongoing GMA discussions.

Ruth Aydt is supported in part by the Department of Energy under contract DOE W-7405-ENG-36
and by the National Science Foundation under Grant No. 9975020. Dan Gunter and Brian
Tierney are supported by the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098.

Any opinions, findings, conclusions, and recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the funding agencies.

12. Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

GWD-I 18-January-2002

aydt@uiuc.edu 11

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights that may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

13. Full Copyright Notice

Copyright (C) Global Grid Forum (2002) All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
GGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE."

14. References

[1] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, R. Wolski. A Grid
Monitoring Architecture. GGF Document series available from
<http://www.gridforum.org>.

[2] G. Klyne, C. Newman. Date and Time on the Internet: Timestamps. IETF Internet-Draft
working document. Currently available at <http://ietf.org/internet-drafts/draft-ietf-impp-
datetime-05.txt>

[3] Simple Object Access Protocol (SOAP) 1.1. <http://www.w3.org/TR/SOAP>.
[4] Java™ Remote Method Invocation (RMI). <http://java.sun.com/products/jdk/rmi>.
[5] XML – Extensible Markup Language. <http://www.w3.org/XML>.

GWD-I 18-January-2002

aydt@uiuc.edu 12

15. Appendix: Component Interaction Figures

Figure 4 shows the interactions between the components of the scenario presented in this
document that relate to registration, discovery, and subscription. Figure 5 shows the flow of
performance events between the producer (srvr) and consumers (archivsys and adminsys).

Figure 4: Registration, Discovery, and Subscription Interactions

 . .

2) Register producer of ws* CPU_LOAD events

3) Locate
archive
service

Directory
Service

Event Type Directory:
 CPU_LOAD schema
Event Producer Directory:
 srvr / CPU_LOAD
Event Consumer Directory:
 archivsys /*(event) / archive

 srvr ws1 ws2 ws10
Producer

archivsys

Consumer

 adminsys

Consumer

1) Register archive service for any event type

5) Locate ws*
CPU_LOAD events

6) Subscribe to ws*
CPU_LOAD events

4) Initiate
archive
service
subscription

Figure 5: Flow of Performance Events

 srvr ws1 ws2 ws10
Producer

archivsys

Consumer

 adminsys

Consumer

CPU_LOAD
events

